

The 4th International Online. **Conference on Crystals**.

18-20 September 2024 | Online

The influence of an ultra-small amount of heterovalent Y³⁺ activator ions in aqueous solution on the defect formation of different growth sectors of α-Ni²⁺SO₄·6H₂O crystals

Irina A. Kaurova¹, Galina M. Kuz'micheva¹, Levko A. Arbanas¹, Vera L. Manomenova² ¹MIREA - Russian Technological University, Vernadsky pr., 78, Moscow, 119454, Russian Federation ²Kurchatov Complex of Crystallography and Photonics, National Research Center "Kurchatov Institute", Leninsky pr., 59, Moscow, 119333, Russian Federation

INTRODUCTION & AIM

Materials based on α -NiSO₄·6H₂O (NSH) (sp. gr. P4₁2₁2, Z = 4) are used for lithium-ion batteries and UV filters for the solar-blind range. Their performance characteristics can be varied by introducing activator ions M [Kuz'micheva, G. M., Arbanas, L. A., Manomenova et al. Journal of Alloys

RESULTS & DISCUSSION

The *a* and *c* unit cell parameters and crystal volume V of NSH, NSH:Y-1 and NSH:Y-2, taken from growth

and Compounds, 965 (2023) 171369]. The structure behaviour of M ions NSH depends on differences in crystallochemical characteristics in of M^{n+} and Ni²⁺ ions, the way of introducing M ions into the solution, and the growth sectors of the crystals.

The goal of this work is to establish the distribution of Y³⁺ ions over the largest growth sectors (001), (101) and (102) of α -Ni²⁺SO₄·6H₂O:Y³⁺ crystals when they are introduced into a solution in extremely small quantities (c = 10 mM).

TEMPERATURE REDUCTION METHOD

NSH:Y-1 (32 g):

- perpendicular to <001>;
- in 144 h growth was interrupted;
- Edge (010) was in contact with the bottom of the crystallizer.

NSH:Y-2 (269 g):

- parallel to <001>;
- growth duration, 336 h;
- Face (001) was in contact with the bottom of the crystallizer

CONCLUSION

•Ratio for unit cell parameters and volume is a, c, V (NSH:Y) > a, c, V (NSH), which confirms entry of Y³⁺ into the NSH:Y structure ($^{VI}r(Y^{3+}) = 0.90 \text{ Å} > ^{VI}r(Ni^{2+}) = 0.69 \text{ Å}$).

•For the NSH:Y-1 and NSH:Y-2, the largest a, Å parameter and relatively small c, Å parameter are found for the growth sector (102). For the NSH:Y-2, a smaller range of parameter's variation is observed, which is not consistent with the content of Y³⁺ ions in the growth sectors according to mass spectroscopy data. The absence of a regular increase in the unit cell parameters with the content of dopant ions is caused by different reticular density $\rho \sim n/S$ (n, the number of material particles, in the present case, Y³⁺ ions; S, surface area): ρ (102)>> ρ (101) for NSH:Y-1 and ρ (102)> ρ (101) for NSH:Y-2. The combination of the large parameter c, Å and the small parameter a, Å is typical for a tetragonal crystal: an increase in the *a* parameter leads to a decrease in the *c* parameter.

• Y^{3+} ions occupy the interstitial site (Y_i) in NSH:Y with the formation of vacancies at

Sample/ Growth sector	Concentration (c_{M}) of Y ³⁺ , ppm (mM/I) / mass spectrometry		
	(001)	(102)	(101)
NSH:Y-1	0.045 (0.045·10 ⁻²)	0.057 (0.057·10 ⁻²)	0.085 (0.085·10 ⁻²)
NSH:Y-2	0.091 (0.091·10 ⁻²)	0.092 (0.092·10 ⁻²)	0.094 (0.094·10 ⁻²)

the Ni site to maintain electroneutrality. Defect formation can be described by the quasichemical reaction $0 \rightarrow V_{Ni}^{n'} + Y_i^{m}$ and the composition $(Ni^{2+}_{1-x^{2\pi}})(Y^{3+}_{i(x)})SO_4] \cdot 6H_2O$. A decrease in the Y³⁺ content is accompanied by a decrease in the Y³⁺ interstitials (Y^m) and vacancies in the Ni²⁺ site $(V_{Ni}^{n'})$.

• The compositions of the NSH:Y growth sectors, on which the functional properties depend, are important for the application of the material: maximum antimicrobial activity in relation to 8 strains of bacteria and fungi was established for NSH:Y-1 (101), caused by the highest Y³⁺ ion content. This allows us to recommend NSH:Y-1 (101) crystal in the form of a low-concentration solution for use in medicine (wound dressings) both individually and in combination with medicinal products.

FUNDING

Ministry of Science and Higher Education of the Russian Federation,

grant № FSFZ-2024-0026.

https://iocc2024.sciforum.net/