

The 4th International Online Conference on Crystals

18-20 September 2024 | Online

Luminescence efficiency of a hygroscopic Cerium-doped Lanthanum Bromide (LaBr₃:Ce) single crystal scintillator: Temperature dependence

Angeliki Martzakli¹, Ioannis Valais¹, Stavros Tseremoglou¹, Nektarios Kalyvas¹, George Fountos¹, Athanasios Bakas², Konstantinos Ninos², Ioannis Kandarakis¹ and Christos Michail¹ ¹Department of Biomedical Engineering, Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, University of West Attica, Athens, 12210, Greece; <u>bme19388059@uniwa.gr</u>; <u>valais@uniwa.gr</u>; <u>stseremoglou@uniwa.gr</u>; <u>nkalyvas@uniwa.gr</u>; <u>gfoun@uniwa.gr</u>; <u>kandarakis@uniwa.gr</u>; <u>cmichail@uniwa.gr</u>; ²Department of Biomedical Sciences, University of West Attica, Athens, 12210, Greece; <u>abakas@uniwa.gr</u>; <u>kninos@uniwa.gr</u>

INTRODUCTION & AIM

Scintillators are used in a variety of applications, including modalities for

RESULTS & DISCUSSION

Antinit

- extreme temperature or radiation flux environmental conditions.
- Thus, knowledge of their luminescence performance, under the influence of temperature or radiation flux, is of paramount importance.
- In this framework, the aim of this study was to examine the influence of temperature on the luminescence efficiency of a hygroscopic cerium-doped lanthanum bromide (LaBr₃:Ce) single-crystal scintillator.
- The crystal output was compared with a cerium-doped lanthanum chloride (LaCl₃:Ce) crystal scintillators of equal dimensions, in similar experimental conditions [1].

METHOD

- The experimental setup comprised of a CPI series CMP 200 DR medical X-ray source, set to a fixed high voltage (90kVp), to expose the sample to X-ray radiation, under temperature conditions in the range 23-154 °C.
- LaBr₃:Ce is an extremely efficient crystal with high light yield of 63,000 photons/MeV and fast decay time (25ns)
 [2].
- The crystal was removed from the protective aluminum encapsulation (thickness 0.7 mm).
- Heating was performed by using a Perel 3700-9 2000W heating gun. The temperature on the crystal surface was monitored using an Agilent Technologies U1253A digital multimeter, coupled to a U1185A thermocouple (J-Type) with temperature probe adapter.
- The ratio of the light energy flux emitted by the examined sample, normalized by the X-ray exposure rate can be

- The luminescence efficiency of LaBr₃:Ce decreases with increasing temperature, between 69.58 EU at 23.0°C to 18.27 EU at 154°C. (EU is the S.I. equivalent μWm⁻²/(mGy/s).
- The corresponding values for LaCl₃:Ce were 33.14 to 17.96 EU in the temperature range from 29 to 162 °C.
- The room temperature absolute efficiency of LaBr₃:Ce, with the protective aluminum encapsulation, was 50.02 EU.

CONCLUSION

LaBr₃:Ce is an extremely efficient crystal scintillator and knowledge upon its performance in various temperatures, could be useful for various applications,

expressed as the absolute luminescence efficiency (ALE)[3,4]:

 $AE = \eta_A = \frac{\dot{\Psi_\lambda}}{\dot{X}} = \left(\frac{i_{elec}}{S\eta_p \alpha_s c_g}\right) \dot{X}^{-1}$

The equation (1) $\dot{\Psi_{\lambda}}$ is the light energy flux (output signal) in units of μ W m⁻². \dot{X} is the exposure rate (mR s⁻¹).

- i_{elec} is the current produced by the electrometer in pA and
 S denotes the surface of the crystal, excited by X-rays (mm²).
- The peak sensitivity of the photocathode (η_p) is expressed in units of pA/W. α_s is the spectral matching between the light source to the spectral response of the optical sensor.
- The geometric light collection efficiency (c_g) has a value of 15.6. The units of the ALE is EU=(μ W m⁻²)/(mR s⁻¹).

from medical imaging up to detectors for extreme environments.

FUTURE WORK / REFERENCES

- Tseremoglou, S.; Ntoupis, V.; Linardatos, D.; Valais, I.; Michail, C.; Bakas, A.; Ninos, K.; Lavdas, E.; Kandarakis, I.; Fountos, G.; et al. Temperature Dependence of the Luminescence Output of LaCl₃:Ce Single Crystal Scintillator. *Procedia Structural Integrity* 2023, 47, 119–124, doi:10.1016/j.prostr.2023.07.002
- Tseremoglou, S.; Michail, C.; Valais, I.; Ninos, K.; Bakas, A.; Kandarakis, I.; Fountos, G.; Kalyvas, N. Evaluation of Cerium-Doped Lanthanum Bromide (LaBr₃:Ce) Single-Crystal Scintillator's Luminescence Properties under X-Ray Radiographic Conditions. *Applied Sciences* 2023, *13*, 419, doi:10.3390/app13010419.
- Tseremoglou, S.; Michail, C.; Valais, I.; Ninos, K.; Bakas, A.; Kandarakis, I.; Fountos, G.; Kalyvas, N. Efficiency Properties of Cerium-Doped Lanthanum Chloride (LaCl₃:Ce) Single Crystal Scintillator under Radiographic X-Ray Excitation. *Crystals* 2022, 12, doi:10.3390/cryst12050655.
- Tseremoglou, S.; Michail, C.; Valais, I.; Ninos, K.; Bakas, A.; Kandarakis, I.; Fountos, G.; Kalyvas, N. Optical Photon Propagation Characteristics and Thickness Optimization of LaCl₃:Ce and LaBr₃:Ce Crystal Scintillators for Nuclear Medicine Imaging. *Crystals* 2024, 14, 24, doi:10.3390/cryst14010024.

https://iocc2024.sciforum.net/