

The 4th International Conference on Forests

23-25 September 2024 | Online

Genome downsize insight into plant biodiversity conservation: a case study of polyploid Morus spp.

RAJU MONDAL¹, Dr. V. Nishitha Naik¹, and Dr. Manthira Moorthy²

¹CSB-Central Sericultural Germplasm Resources Centre (CSGRC), Hosur, Tamil Nady 635 109, India ² Central Silk Board, Bengaluru, Karnataka 560068, India

INTRODUCTION & AIM

- Sericulture is one of the oldest (5000 BC) agro-based industries that start with agriculture, that production of tree mulberries (*Morus* spp.) to feed silkworms (*Bombyx mori*) for production of silk.
- Sericulture is an integrated model of eco-physiology, and evolution system.
- Morus spp. complex experienced significant effect of polyplodization, as evidenced by genome size diversity from haploid (x=14) to decosaploid (22x=308).
- Aim to understand the influenced of increased genome size/ploidy of *Morus* spp. on plant performance.

RESULTS & DISCUSSION

✓ Identified major cytotypes of *Morus* spp. are diploid (2n=2x=28), triploids (2n=3x=42), tetraploids (2n=4x=56), hexaploid (2n=6x=84), and decasoploid (2n=22x=308).

	Cytology		Flow cytometry			
A 2n=2x=28 B 2n=3x=42 5 jum 5 jum 5 jum 5 jum 5 jum 5 jum	С 2n=4x=56 D 5 µm 5 µm	<u>з шт</u> <u>з шт</u>	E 2n=22x=308	DOI: 10.21769/BioProtoc.4643		
		DOI: 10.21/6	9/BioProtoc.4643	-		

 \checkmark Flow cytometry analysis estimated the genome size of highly polyploid

METHOD								
#	Study/Parameters	Method/Instrument	Unit					
1	Chromosomes number	Metaphase study	number					
2	Ploidy level	Flow cytometry	Pg/MBp					
3	Leaf thickness	•Sample staining with iodine and of	μm					
4	Guard cell volume	potassium iodide solution for 1 min. Followed by wash with 70 % ethanol.	μm³					
5	Chloroplasts per guard cell	Ponowed by wash with 70 % ethanol.	number					
6	Stomatal size	•Light Microscope	μm²					
7	Stomatal open pore size	•Image J software	μm²					
8	Stomatal density		no.mm- ²					
9	Trichome length		μm					
10	Photosynthetic rate (Pn)	LI-6400XT instruments	µmol CO ₂ m ⁻² s ⁻¹					
11	Instantaneous Water Use Efficiency (iWUE)		Pn/E ratio					
12	Stomata conductance (gs)		mol $H_2O m^{-2} s^{-1}$					
13	ROS and Starch content	In situ localization; Image J software	Ratio (Intensity)					

species such, and considerable genome downsize observed in decosaploid *M*. *nigra* L. (1Cx, ~360.25).

Relationship of Morus spp. based on cytotypes										
		2n (#)	Cytotype	2C(pg)	1Cx(Mbp)					
	– Morus nigra	2n=22x=308	Decasoploid	~8	~360					
	Morus serrata	2n=6x=84	Hexaploid	~2.8	~430					
	Morus laevigata Morus rubra Morus alba Morus macroura Morus rotundiloba Morus multicaulis Morus australis Morus bombycis Morus atropurpurea Morus indica	2n=2x=28 > 2n=3x=42 2n=4x=56	Diploid/ Triploid** tetraploid ***	~1.4	~432 ~420 ~420 ~420					

✓ Despite of higher number of chloroplasts and volumetric guard cell, mulberry polyploid photosynthetic traits has downsized, which may associated with higher operational stomatal conductivity and lower iWUE.

Metaphase study

bio-protocol

Flow cytometry

ហ

 \Box

A Protocol for Mitotic Metaphase Chromosome Count Using Shoot Meristematic Tissues of Mulberry Tree Species

Raju Mondal^{1, 4, 6}, Sreya Antony^{1, 9}, Belaghihalli N. Gnanesh², G. Thanavendan¹, G. Ravikumar¹, B.T. Sreenivasa¹, S. Gandhi Doss³, and K. Vijayan⁴

diploid

polyploid

Leaf gas exchanges

✓ Our results point to a possible decrease in growth superiority of polyploids.

CONCLUSION

Over episodes of polyploidization and selection pressure, factors like the growth rate, genome size, and nutritional constraints enforced not only reduce the genome size but also restrict the growth of polyploid.

FUTURE WORK

- Needs immediate attention to understand the structural and functional aspect of polyploid particularly in tree species of wild origin.
- Conservation efforts need to refocus on managing tree polyploids.

FUNDING

REFERENCES

Central Silk Board (**CSB**), Ministry of Textile, Govt. of India, Bangalore funded projects **PIG06004SI** & **PIG06010SIC.** We thank National Centre for Biological Sciences (**NCBS**), Bengaluru, India for the flow cytometry facility.

Mondal et al., 2023. *Bio-protocol*, 13(17). 1-11.
Šmarda et al., 2023. *New Phytologist*, 239(1), 399-414.
Pacey et al., 2022. *Current Biology* 32, 18; 4057-4063.
Buchner et al., 2002. *Plant molecular biology*, 49, 171-186.

https://sciforum.net/event/IECF2024