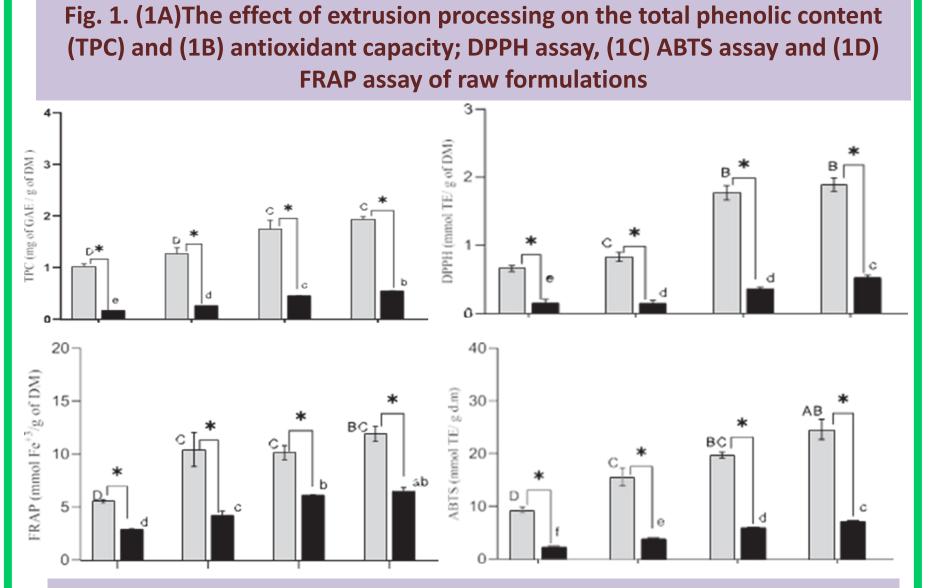
IECN 2024 Conference

The 4th International Electronic Conference on Nutrients

16–18 October 2024 | Online

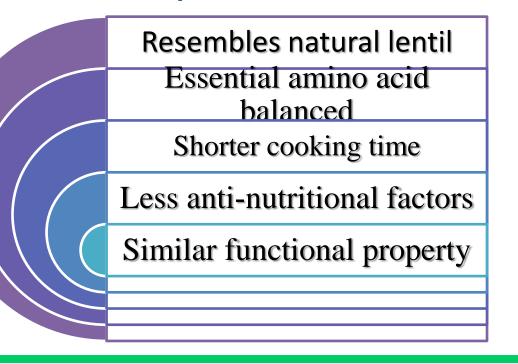
A sustainable, extruded legume-based protein source: antioxidant, anti-nutrient, and structural profile

JAYSHREE MAJUMDAR1,2, HARI NIWAS MISHRA1


1 Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India

2. Food technology Department, Guru Nanak Institute of Technology, kolkata

Introduction


The challenges of the expanding global population have necessitated the exploration of plant-based protein sources to minimize animal product consumption. However, legumes have comparatively low amounts of sulphur-containing essential amino acids and higher levels of antinutrients; they are also difficult to cook and have low digestibility. Protein quality in a single lentil does not reach the same level as animal products due to unbalanced essential amino acid (EAA) composition. To address this problem, an EAA balanced lentil is developed which

Results & Discussion

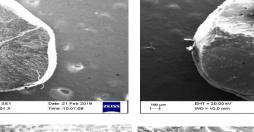
Conclusions

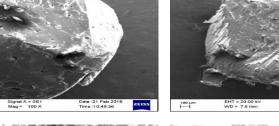
≻The present studies show the ability of extrusion processing on reducing antinutritional factor such as phytic acid, tannin, trypsin inhibitor. The extrusion procedure lowered antinutritional factors by 77.2 to 93.6%. \succ Extrusion resulted in a significant (P < **0.05) decrease in TPC and DPPH, ABTS** and FRAP radical scavenging activities of all the samples compared to their corresponding raw formulations The use of low temperatures (<110 \circ C)

Aim

The present investigation studies the anti-nutrient, antioxidant, and structural profile of a A sustainable, extruded legume-based protein source known as Nutri lentil


Methods


Four combinations containing chickpeas/lentils/mung beans/protein isolate at different ratios (A-42:20:34:4, B-35:30:31:4; C-45:27:25:3; D-37:25: 35:3) were formulated using MATLAB's linear programming. The mixture was extruded using a twin screw extruder at die temperature (100 to 115 °C) with a screw speed of 100-200 rpm at a constant feed rate of 12 rpm and a feed moisture of 22%. The extrudate was passed through a specifically designed die.


Fig 2. Phytic acid, tannin, trypsin inhibitor, total polyphenols content made from lentil using different extrusion temperature and feed moisture

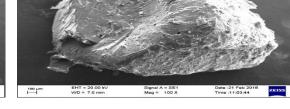
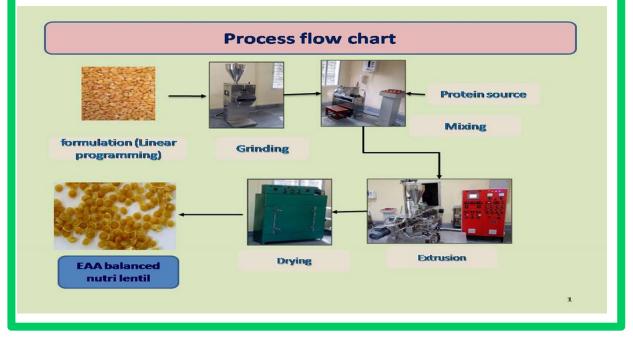

Extrusion temperature (C)	Composition	Phytic acid (g/100 g dry matter)	Tannin (mg eq. cat/100 g dry matter)	Trypsin inhibitor (IU/mg dry mater)	Total polyphenols (mg GAE/g)
100	А	0.047 ± 0.02 (85.01%)	0.065 ± 0.04 (93.08%)	0.049 ± 0.02 (98.26%)	5.1 ± 0.8 (27.14%)
	В	0.072 ± 0.01 (77.27%)	0.062 ± 0.01 (93.40%)	0.046 ± 0.05 (98.37%)	4.8 ± 0.13 (31.43%)
	с	0.062 ± 0.01 (88.45%)	0.059 ± 0.02 (93.72%)	0.044 ± 0.04 (98.44%)	4.6 ± 0.12 (34.28%)
	D	0.60 ± 0.01 (82.45%)	0.059 ± 0.02 (93.72%)	0.044 ± 0.04 (98.44%)	4.6 ± 0.12 (34.28%)
150	А	0.030 ± 0.03 (81.38)	0.040 ± 0.01 (95.74%)	0.030 ± 0.02 (98.94%)	3.7 ± 0.6 (47.14%)
	В	0.027 ± 0.01 (82.64%)	0.038 ± 0.03 (95.96%)	0.026 ± 0.01 (99.07%)	3.5 ± 0.16 (50%)
	с	0.046 ± 0.01 (77.73%)	0.035 ± 0.01 (96.28%)	0.020 ± 0.02 (99.29%)	3.2 ± 0.11 (54.28%)
	D	0.029 ± 0.01 (80.64%)	0.036 ± 0.03 (91.96%)	0.021 ± 0.01 (99.07%)	3.5 ± 0.16 (50%)
200	А	0.011 ± 0.02 (89.04%)	0.020 ± 0.01 (97.87%)	0.017 ± 0.01 (99.39%)	2.9 ± 0.1 (58.57%)
	В	0.010 ± 0.001 (91.13%)	0.018 ± 0.02 (98.08%)	0.014 ± 0.03 (99.50%)	2.5 ± 0.09 (64.29%)
	с	0.008 ± 0.01 (90.30%)	0.011 ± 0.02 (98.83%)	0.013 ± 0.01 (99.54%)	2.4 ± 0.4 (65.71%)
	D	0.072 ± 0.01 (77.27%)	0.062 ± 0.01 (93.40%)	0.046 ± 0.05 (98.37%)	4.8 ± 0.13 (31.43%)
Lentil seed (Control)		1.1436 ± 0.10	0.94 ± 0.09	2.823 ± 0.12	7.0 ± 0.7

Fig. 3 SEM images) of (a) Natural lentil (b) Nutri lentil tray dried (c) Nutri lentil vacuum dried

and relatively low moisture (<14%) can retain higher contents of phenolics and improve the antioxidant activity.

≻The interior structure revealed the formation of extensive air cells. An open cell structure and a thinner cell wall at temperatures showed high lower expansion. This might be attributed to the quicker cooking time of lentils (9 to 15 minutes).


>XRD revealed cooking extrusion transformed the disordered protein and starch crystalline structure structure an amorphous one, to continuous gelatinized indicating a starch phase.

> However, extruded samples exhibited two peaks at around 13° and 19.7° 20, indicating the presence of V-type pattern developed during extrusion cooking. This V-type peak was due to the formation of amylose-lipid complexes. ➢ Formulation C, with a higher amount of chickpeas, showed greater expansion and retained maximum antioxidants

References

>Adedeji AA, Joseph MV, Plattner B, Alavi S. Physicochemical and functional properties of extruded sorghum-based bean analog. Journal of Food Process Engineering. 2017 Apr;40(2):e12401.

Ghumman A, Kaur A, Singh N, Singh B. Effect of

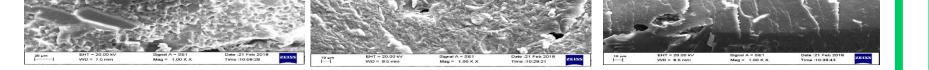
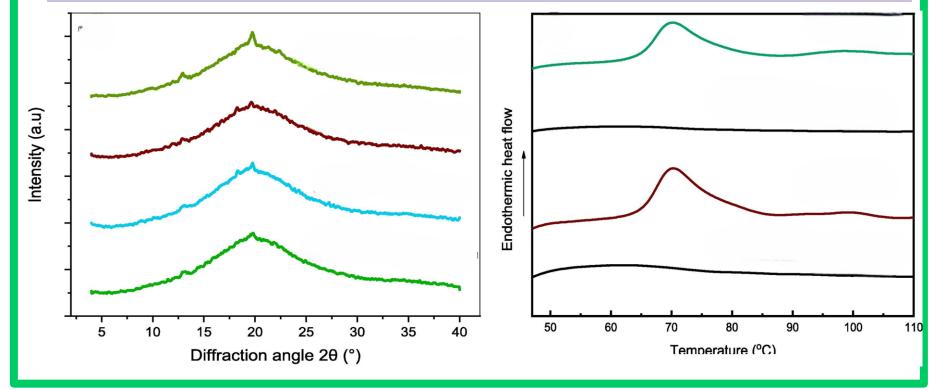



Fig. 3. Differential scanning calorimetry thermograms and X-ray diffractograms of faba bean flour, faba bean blends (FB) (a-c) and selected extrudates (b-d).

feed moisture and extrusion temperature on protein digestibility and extrusion behaviour of lentil and horsegram. LWT. 2016 Jul 1;70:349-57.

Natabirwa H, Muyonga JH, Nakimbugwe D, Lungaho M. Physico-chemical properties and extrusion behaviour of selected common bean varieties. Journal of the Science of Food and Agriculture. 2018 Mar;98(4):1492-501.

Acknowledgments

Thankful to the Indian Institute of Technology Kharagpur, Ministry of Human Resources **Development (MHRD) for providing resources and** fellowship to the presenting author. Also GNIT for resources