

The 1st International Online Conference on Bioengineering

16–18 October 2024 | Online

Granulated wollastonite – hardystonite bioceramics

Anna Petrovna Solonenko¹, Alisa Evgen'evna Shevchenko¹, Denis Anreevich Polonyankin²

- ¹ Scientific Laboratory, Stomatological Department, Omsk State Medical University, 644099 Omsk, Russia
- ² Physics Department, Radio Engineering Faculty, Omsk State Technical University, 644050 Omsk, Russia

INTRODUCTION & AIM

Hardystonite (HS, Ca₂ZnSi₂O₇) of the promising one İS for tissue compounds bone restoration due its to biocompability and good mechanical properties. However, it has too low rate of dissolution in (prototypes of) biological fluids, according to literature data. As a HS of increasing way biomaterials dissolution, the method of production Of composites based on Ca₂ZnSi₂O₇ and wollastonite (W, CaSiO₃) mixtures has been proposed in this work.

METHODS

The granules were synthesized by the emulsion method using mechanical mixtures of powdered β -CaSiO₃ and ZnO (0, 0.5, 1.5, 2.5, 5, 10, 12.5, 15, 20, 25 wt.%), and gelatin as a binder. All synthesizes were carried out in 10 parallels.

Scheme for granules synthesis: a - preparation of a powders mixture, b - gelatin addition, c - powder and gelatin mixing, d - suspension addition to oil under stirring, e - granules cooling, f - washing granules from oil and drying in air

The granules were heat treated in air at 1250°C. Materials were analyzed using XRD, FTIR, TGA, SEM. The fractional composition, true and average density, open porosity and solubility in Tris-HCI-buffer were also determined.

RESULTS & DISCUSSION

Spherical granules with a diameter 0.1 ÷ 3 mm were synthesized.

General view of the granules and their fractional composition

During heat treatment the binder burns out (at 200 \div 500 °C) and hardystonite is formed as a result of solid-state interaction between ZnO and CaSiO₃:

 $2 \text{ CaSiO}_3 + \text{ZnO} \xrightarrow{t > 750 \text{ °C}} \text{Ca}_2 \text{ZnSi}_2 \text{O}_7$

Materials can gradually dissolve in ¹⁵ Tris-HCI-buffer. Ions concentrations in ¹⁵ solutions decrease in order $Ca^{2+} > 10$ $SiO_3^{2-} > Zn^{2+}$ at all time points. The ⁵ less HS content in granules, the more ⁰ Ca^{2+} and SiO_3^{2-} quantities and less ⁰ Zn^{2+} in the surrounding media. Granules with 96 wt.% HS lost less than 0.5 wt.% for 6 months. ³ Decreasing of its content in 2 times ² leads to increasing of weight loss for ¹ 25 times.

Dependence of the granules composition, open porosity (OP), average density (ρ) and mass loss (Δm) on initial ZnO content (W_{7n0})

XRD and FTIR showed that variation of ZnO content in the initial powder leads to formation of α -CaSiO₃ mixed with up to 96 wt.% Ca₂ZnSi₂O₇ (at 25 wt.% ZnO).

XRD and FTIR data for granules with different initial ZnO content

Surface and internal structure of the granules

111000 100			o oomon	V ZnO/	
W _{ZnO} , wt.%	W _{HS} , wt.%	OP, %	ρ, g/cm ³	Δm, wt.%	40 -
0	0	55.7	1.146	7.6	20 -
1.5%	5.8	58.6	1.239	20.7	
2.5%	9.7	56.7	1.252	23.0	
5%	19.3	58.3	1.233	20.5	0 40 80 120 160 t, days
10%	38.6	60.4	1.238	14.6	· •
15%	58.0	60.4	1.245	13.8	Dependences of ions
20%	77.3	57.5	1.380	1.3	concentrations on time of granules soaking in
25%	96.6	61.6	1.410	0.3	- Tris-HCI-buffer

CONCLUSION

- ✓ Composites with varying content of Ca₂ZnSi₂O₇ and CaSiO₃ was produced.
- ✓ Mixing with wollastonite allow to significantly increase dissolution rate of hardystonite containing materials.

IOCBE2024.sciforum.net