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Using Machine Learning and Deep Learning Approaches

Lakshmi Y Sujeeun®?34 Nowsheen Goonoo?, Itisha Chummun Phul?, Shakuntala Baichoo?, Nicolas A Kotov3#, Archana Bhaw-Luximon*?

UNIVERSITY OF
1Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), 2Department of Digital Technologies, Faculty of Information, MAURITIUS

Communication and Digital Technologies, University of Mauritius, Réduit, Mauritius; 3Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA;
4National Science Foundation (NSF), Science and Technology Centers (STC), Center of Complex Particle Systems (COMPASS)

1950s: Emergence of Artificial Intelligence (Al) as a
field of study.

1970s: 1%t generation of scaffolds — Bioinert materials
introduced.

1980s-1990s: Growing interest in applying Al
techniques across various clinical settings in

1980s: 2" generation — Development of degradable

Scaffolds

healthcare. scaffolds.
Support for cell growth
2010s: Rapid expansion of Al-driven applications p 199f(f)sid3rd generation — Introduction of bioactive
scaffolds.

in  healthcare, revolutionizing diagnostics,
treatment planning, and patient care.

2000s: 4t generation - Scaffolds capable of
encapsulating genes, cells, and molecules.

2010s—Present: Increasing use of Al and
computational models to optimize scaffold design
and enhance tissue regeneration strategies.

Nanofibrous scaffolds with
cells and growth factors

2010s: 5t generation — Stimuli-responsive scaffolds.
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Results & Discussion

Predicting miscibility of polymer blends? Predicting cell-material-interactions during the

° o ° ° 2
Miscibility: one of the key factors affecting the structure and properties of inflammation and prollferatlon phases
a polymer blend.

Cell responses prediction using Random Forest regression models
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as key parameters influencing in vitro cell
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proliferation and inflammatory responses.

probability level). Principal component analysis (PCA) biplot for PC1 (29.1% explained

variability) and PC2 (19.8% explained variability) of polyester/polysaccharides and
polysaccharides/polyamides blends. CellProfiler and CellProfiler Analyst to classify 12004

macrophage phenotypes

Fibroblast cell proliferation

Accuracy: 63 % for the training set; 61 % for the testing set.

Confusion matrix for Random Forest 1000

Model performance for Random Forest classifier
= Accuracy: 96.1% for the training set; 95.7% for the

n testing set.

= Testing set included 47 polymer blends.
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= 14 out of 15 immiscible blends were predicted
31 correctly.
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Partially miscible

= 31 out of 32 partially miscible blends were

M1

immiscible partialy miscible predicted correctly. ... . macrngihage TNF-a levels in macrophages
Prediction Accuracy: 93 % for the training set; 89 % for the testing set.

/ Preliminary deep learning pre-trained modeling to
classify macrophage cells

Conclusion & Future Work

= Polymer blends affect scaffold properties, influencing cell-material interactions.

SEM images of
macrophage phenotypes

w B CNN pre-trained models Trained classification

» Fiber and pore diameters are critical for promoting cell growth and penetration

using transfer learning model
in scaffolds. Predicting specific cell-scaffold interactions can enhance i - VGG16 / \
therapeutic outcomes. e bre-tramed models by " Reshets0 mo w1
* Future work: investigating graph theory to characterize complex nanofiber - o o o e dioud
networks and using molecular docking to study interactions between scaffold- \mg‘illfﬂf’yﬁl,?&w + udcm?p'."ﬁiﬁfi..'o.e‘lf‘”alys"‘ With 10 epochs, the VGG16 and ResNet50 models generated
loaded biomolecules and target proteins. wlidation accuracies of 90.3% and 91.4% respectively.
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