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INTRODUCTION & AIM

Skin wounds pose a significant challenge, affecting millions worldwide.
Traditional approaches to skin regeneration, ranging from autografts to
tissue-engineered skin substitutes, have achieved varying levels of

SUCCESS. AlthOUgh effective, aUtOgraftS are limited by donor site morbidity Fig. 3 - H&E staining of samples after protocol A (A, B, C), protocol B (D, E, F), protocol C (G, H, I) and control group

(J, K, L). Lines correspond to 10, 20 and 40x magnitude, respectively. Fig. 4 - Masson’s Trichrome staining. A, control

and avallablllty' On the other hand’ commercial skin substitutes often group showing red staining indicating cytoplasm presence. B, decellularized group showing blue staining, indicating a

higher presence of collagen than cells. Fig. 5 - A, protocol A; B, protocol B; C, protocol C stained with DAPI without

suffer from poor integration and immune rejection, in addition to high | | _ | | _
cell nuclei. D, non-decellularized group stained with DAPI showing cell nuclei. Scale bar = 100 ym

costs. These challenges highlight a critical need for innovative solutions. A Fig. 6 - A, Viscosity vs Shear
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Fig. 10 - Live-Dead assay, 7 days after
3D bioprinting. A, B, C - control; D, E, F -
A3S1.5 bioink. G - Quantification of

DAPI Ki-67 Merge

viability.
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Fig. 11 - Ki-67 staining after 1 day of bioprinting, indicating 3D
bioink sustained proliferative status (D, E, F), as compared with
control (A, B, C).

Fig. 1 — Experimental Design. Discarded rat skin decellularization process.

Bioink

Decellularization protocol efficiency was assessed through DNA quantification and

histological staining. Skin bioink was produced by mixing 7% (w/v) porcine skin gelatin, 3

or 4% sodium alginate (A) and 1,5 or 3% lyophilized decellularized skin (S) in PBS 1X. CONCLUSION

Rheological characterization of three different concentrations (A3S1,5; A3S3; and A4S3)
The bioink demonstrated controlled degradation over 28 days, maintaining

was realized. Hydrogels were 3D printed, SEM images were obtained and swelling assay

was realized. 1x10%6 SHED/mL was added to bioink, bioprinted and analysed through structural integrity for a period suitable for skin regeneration. Additionally, it

Live-Dead assay and proliferation staining. supported cell proliferation for 14 days, highlighting its potential as a

RESULTS & DISCUSSION promising solution for skin wound healing.
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