

The 3rd International Electronic Conference on Diversity

15-17 October 2024 | Online

The Role of Grey Wolf (Canis lupus) in the Transmission of Sarcocystis spp. in Lithuania

Tamara Kalashnikova¹, Naglis Gudiškis¹, Donatas Šneideris¹, Evelina Juozaitytė-Ngugu¹, Petras Prakas¹, Dalius Butkauskas¹

Nature Research Centre, Vilnius, Lithuania

tamara.kalashnikova@gamtc.lt

INTRODUCTION & AIM

The genus *Sarcocystis* are worldwide distributed unicellular parasites known for their two-host prey-predator life cycle. Globally, research efforts tend to concentrate on domestic dogs, cats, and other carnivores due to the challenges associated with studying grey wolves (*Canis lupus*), such as their lower population density and legal protections. Understanding the role of grey wolves in parasite transmission is crucial, particularly in regions where they serve as apex predators.

METHODS

During 2021-2023, 13 intestinal samples from hunted grey wolves were collected in Lithuania and were analysed by the means of microscopy and molecular analysis.

Light microscopy revealed that 92.3% of the samples were positive for the presence of *Sarcocystis* spp. sporocysts and oocysts.

Molecular results showed that there are more species transmitted through cervids,

Figure 1. Prevalence of *Sarcocystis* species in grey wolf samples. Bars indicate confidence level of 95%.

CONCLUSION

- Methodology in this study allows a detection of multiple *Sarcocystis* species within a single wolf specimen.
- It is the first report of grey wolf as a definitive host for *S. alces, S. iberica, S. pilosa and S. venatoria.*

probably due to the dietary peculiarity of grey wolves in Lithuania.

REFERENCES

- Badry, A., Slobodnik, J., Alygizakis, N.A., Bunke, D., Cincinelli, A., Claßen, D., Dekker, R.W., Duke, G.D., Dulio, V., Göckener, B., Gkotsis, G., Hanke, G., Jartun, M., Movalli, P., Nika, M., Rüdel, H., Thomaidis, N.S., Tarazona, J.V., Tornero, V., Treu, G., Vorkamp, K., Walker, L.A., & Koschorreck, J. (2022). Using environmental monitoring data from apex predators for chemicals management: towards harmonised sampling and processing of archived wildlife samples to increase the regulatory uptake of monitoring data in chemicals management. Environmental Sciences Europe, 34, 1-8.
- Yabsley, M. J. (2017). Sarcocystosis of Animals and Humans Sarcocystosis of Animals and Humans. Second Edition. By J. P. Dubey, R. Calero-Bernal, B. M. Rosenthal, C. A. Speer, and R. Fayer. CRC Press, Boca Raton, Florida. 2016. 481 pp. ISBN-10: 1498710123, ISBN-13: 978-1498710121. US \$140 hardback; \$98 eBook. Journal of Wildlife Diseases, 53(4), 948–949. https://doi.org/10.7589/0090-3558-53.4.948
- 3. Gammino, B., Palacios, V., Root-Gutteridge, H., Reby, D., & Gamba, M. (2023). Grey wolves (Canis lupus) discriminate between familiar and unfamiliar human voices. Animal Cognition, 26, 1589 1600.
- 4. Hoy, S.R., Hedrick, P.W., Peterson, R.O., Vucetich, L.M., Brzeski, K.E., & Vucetich, J.A. (2023). The far-reaching effects of genetic process in a keystone predator species, grey wolves. Science Advances, 9.
- Marandykina-Prakienė, A., Butkauskas, D., Gudiškis, N., Juozaitytė-Ngugu, E., Bagdonaitė, D., Kirjušina, M., Calero-Bernal, R., & Prakas,
 P. (2023). Sarcocystis Species Richness in Sheep and Goats from Lithuania. Veterinary Sciences, 10.
- 6. Prakas, P., Rehbein, S., Rudaitytė-Lukošienė, E., & Butkauskas, D. (2023). Molecular identification of Sarcocystis species in sika deer (Cervus nippon) of free-ranging populations in Germany and Austria. Veterinary Research Communications, 1-7.
- 7. Shaw, K.E., Cloud, R.E., Syed, R., & Civitello, D.J. (2023). Parasite transmission in size-structured populations. bioRxiv.

This work was funded by the Research Council of Lithuania (grant number S-MIP-23-3)

IECD2024.sciforum.net