

The 1st International Online Conference on Photonics

14–16 October 2024 | Online

Comparison of different Far-UVC sources with regards to intensity stability, estimated antimicrobial efficiency and potential human hazard in comparison to a conventional UVC lamp Ben Sicks¹, Florian Maiss¹, Christian Lingenfelder², Cornelia Wiegand³, Martin Hessling¹

¹Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, D-89081 Ulm (Germany) ²Zimmer MedizinSysteme GmbH, Junkersstraße 9, D-89231 Neu-Ulm (Germany)

³Department of Dermatology, University Hospital Jena, Am Klinikum 1, D-07747 Jena (Germany)

INTRODUCTION & AIM

Background

- the strong antimicrobial impact of 254 nm mercury vapor UVC lamps caused by there DNA/RNA destroying properties - has been known for a century [1]
- $\circ~$ unfortunately, this UVC radiation also damages human cells
- the uprising Far-UVC sources with peak emissions between 200 and 240 nm promise strong disinfection without much harm to humans
- however, there are various Far-UVC sources that differ in their dangerous longer wavelength UVC emission and, subsequently, in their risk potential
- they might also exhibit changes in their emission intensity if they are in prolonged operation, e.g. to disinfect the air in waiting halls

RESULTS & DISCUSSION

Source emission spectra and assessment

- $\circ~$ the normalized emission spectra can be found in Figure 2 $\,$
- $\,\circ\,\,$ the intensity variations over a period of 100 h are given in Figure 3
- the relative antimicrobial effect (compared to the Hg lamp) and the relative hazard (compared to the filtered KrCl lamp of UVMedico/Ushio) are listed in Table 1.

Aim

- assess four far-UVC sources and a conventional Hg UVC lamp with regard to their risk to humans and antimicrobial impact by their spectral emissions and known sensitivities
- investigate lamp stability and potential drop in UVC intensity

METHOD

Source emission spectra

The emission spectra of these five (Far-) UVC sources were measured for about 100 h by a calibrated spectrometer CAS 140D from Instruments Systems (Munich, Germany):

- 222 nm KrCl lamp (20 W, filtered), type "UV222" of UVMedico (Aarhus, Denmark) with a KrCl 222 nm module of Ushio (Cypress, USA)
- o 222 nm KrCl lamp (20 W, filtered), type "DF28B" of Conlustro (Sheridan, USA)
- 222 nm KrCl lamp (5 W, unfiltered), type "DF15B-B1" of France-UVC (Lévignac de Guyenne, France) in combination with a provided electrical converter and a lab power supply at a constant current of 1 A
- 236 nm Far-UVC LED (0.3 W, unfiltered), type "SF1 flat lens" of Silanna UV (Pinkenba, Australia) in combination with a lab power supply at a current of 40 mA
- o 254 nm Hg lamp (6 W, unfiltered), type "3UV36" of Analytik Jena (Jena, Germany)

Assessment

• with the determined emissions spectra $E(\lambda)$ – normalized to 1 mW/cm² – the known sensitivity of *Bacillus subtillis* spores $A(\lambda)$ [2], the relative spectral effectiveness for the irradiation of eye and skin $S(\lambda)$ [3] – both as illustrated in Figure 1 - the relative antimicrobial efficacy X_{antimic} and the hazard to human eyes and skin X_{hazard} of (Far-) UVC sources can be calculated:

$$X_{antimic} = \sum_{200 nm}^{339 nm} E(\lambda) \ x \ A(\lambda) \ x \ \Delta \lambda \qquad X_{hazard} = \sum_{200 nm}^{400 nm} E(\lambda) \ x \ S(\lambda) \ x \ \Delta \lambda$$

Figure 2. Spectral irradiances of different UVC sources, normalized to a UV irradiation of 1 mW/cm².

Figure 3: Time-dependent intensity variation of various UVC sources over a period of about 100 h.

Table 1: Calculated relative antimicrobial effect according to *B. subtilis* data [2] and hazard assessment for human eyes and skin based on ACGIH spectral effectiveness [3]. The values for antimicrobial efficacy and human exposure in brackets are scaled to the effect of the Hg lamp and the filtered KrCl lamp from UVMedico/Ushio, respectively.

	UVMedico/Ushio	Conlustro (222 nm	France-UVC (222 nm,	Silanna LED	Analytik Jena
	(222 nm KrCl, filtered)	KrCl, filtered)	KrCl, unfiltered)	(236 nm)	(254 nm, Hg)
antimicrobial impact (normalized to Analytik Jena lamp)	0.907 (0.96)	0.880 (0.93)	0.826 (0.87)	0.737 (0.78)	0.946 (1.0)
eye & skin hazard (normalized to filtered UVMedico/Ushio lamp)	0.019 (1.0)	0.022 (1.17)	0.055 (2.9)	0.247 (13)	0.475 (25)

Figure 2: Spectrally resolved relative antimicrobial impact and potential hazards to human eyes and skin for the UV range 200 – 300 nm according to DIN 5031-10 and the ACGIH-TLVs [2,3].

CONCLUSION

- o all UVC sources exhibit more or less the same relative antimicrobial impact
- the eye and skin hazard differ extremely even between filtered and unfiltered KrCl lamps there is a factor of three
- o the hazards posed by all Far-UVC sources are lower than for the Hg lamp
- the emission intensities of the filtered KrCl lamps are most stable after 30 min

⇒ So far, filtered KrCl lamps seem to be the best choice for a UVC source with a strong antimicrobial impact, low risk to humans and stable intensity over longer periods

REFERENCES

[1] Jagger, J. Introduction to Research in Ultraviolet Photobiology, Photochem. Photobiol. 1968; 4:413.

[2] DIN 5031-10:2018-03, Strahlungsphysik im optischen Bereich und Lichttechnik_- Teil_10: Photobiologisch wirksame Strahlung, Größen, Kurzzeichen und Wirkungsspektren. Berlin: Beuth Verlag GmbH.

[3] American Conference of Governmental Industrial Hygienists (ACGIH). Threshold Limit Values (TLVs) and Biological Exposure Indices (BEIs): Based on the documentation of the threshold limit values for chemical substances and physical agents. Cincinnati, USA: ACGIH Publications 2022.

https://iocp2024.sciforum.net/