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Introduction & Aim

* Magnetization reversal processes and magnetization dynamics in general are of utmost importance for many spintronics
applications, e.g. bit patterned media [1]

* Such ultrafast dynamics can be measured by pump-probe experiments with pulsed lasers: a strong pump laser excites a sudden
change of the magnetization vector leading to magnetization precession, measured by the weak probe laser

* To simulate this process, a model has been developed based on the micromagnetic simulator MagPar-LLB

» Using simulated ultra-short laser pulses, we investigated a matrix of separate ferromagnetic cylindrical cells to prototype possible
memory applications

* FePt cells immersed in an MgO layer for adequate thermal conditions, heat-transport was solved by the two-temperature model

« Simulations were performed using the micromagnetic Landau-Lifshitz-Bloch (LLB) equation and the finite element method (FEM)

» Calculations were carried out for different distances between cells and a variety of laser pulse durations and intensities

* The results inform about stability conditions for magnetization states and the possible spatial density of such memory devices /
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