

The 1st International Online **Conference on Photonics**

14-16 October 2024 | Online

Laser emission from buried depressed-cladding waveguides inscribed in Nd³⁺:CLNGG laser crystals by picosecond-laser beam writing

Gabriela Croitoru^{*}, Florin Jipa, Madalin Greculeasa, Alin Broasca, Flavius Voicu, Lucian Gheorghe, Nicolaie Pavel National Institute for Laser, Plasma and Radiation Physics, Laboratory of Solid-State Quantum Electronics, Atomistilor Street 409, Magurele 077125, Ilfov, Romania *gabriela.croitoru@inflpr.ro

INTRODUCTION & MOTIVATION

WAVEGUIDE STRUCTURES are the building blocks for various integrated photonic devices:

- Waveguide lasers and amplifiers
- Beam splitters
- Light modulators
- Directional couplers
- Polarizers

with a set of very important advantages:

- Devices with compact geometries
- Light confinement and propagation in volumes with dimensions at μm scale
- High levels of optical intensities - Robust functionality

OPTICAL WRITING:

- Local, permanently change of the material refractive index with a laser beam;
 - Single-step fabrication process (no masking, immersion in liquids or other additional processes);
 - The waveguide formation depends on the nature of the processed material, on the parameters of the laser beam used for writing and on the focusing conditions.
 - There are few works that are reporting waveguide realization with laser systems that are delivering pulses in the range of few picosecond (ps-) duration.
- THIS WORK: REALIZATION of BURIED DEPRESSED-CLADDING WAVEGUIDES in Nd³⁺:CLNGG crystals by DIRECT LASER WRITING (DLW) with a PICOSECOND-LASER BEAM.

EXPERIMENTAL CONDITIONS

- The laser crystals were obtained in our laboratory, from boules grown by the Czochralski technique.
- a)

FIG. 1 a) The Nd:CLNGG boule after growing. b) The 5.9-mm thick, 0.7-at.% Nd:CLNGG laser crystal.

- Growth parameters
- 1 mm/h- pulling rate:
- rotation rate: 20 rpm
- growth direction: <111>
- Writing parameters
- Focusing: Lens (L), f= 6.24 mm, NA= 0.40; ~2.0 µm (in air);
- Waist diameter:
- Pulse energy: 0.2 μJ; Speed: 1 mm/s.

FIG. 2 The experimental set-up used for waveguide writing in the 0.7-at.% Nd:CLNGG crystal is presented. L: lens.

- FIG. 3 a) Cross-section microscope view for the circular waveguide NCLNGG-C and **b)** a view of the exit surface under the pump at 807 nm are shown.
- Table 1. Propagation losses at 632.8 nm for the waveguides inscribed in Nd:CLNGG crystal.

FIG. 5 Laser pulse energy at 1.06 μ m vs absorbed pump pulse energy (η_a = 0.81) in **a**) "bulk" Nd:CLNGG and vs pump pulse energy in **b)** the circular waveguide NCLNGG-C. T: OCM transmission. Lines are linear fits of the experimental data.

$$\lambda_{em}$$
 = 1.06 µm $\rightarrow E_{p}$ = 2.4 mJ @ E_{abs} = 6.8 mJ $\cdot \lambda_{em}$ = 1.06 µm $\rightarrow E_{p}$ = 0.25 mJ @ E_{pump} = 13.2 mJ

Waveguide type	Characteristics	Propagation loss, (dB/cm)	
		ps-DLW fs	fs-DLW ^{*)}
Bulk Nd:CLNGG	5.9-mm length	0.4	0.3
circular, NCLNGG-C	diameter, ϕ = 100 μ m	0.9	2.65

^{*)}buried depressed-cladding waveguide with circular 100-µm diameter inscribed in Nd:CLNGG crystal with a fs-laser beam; same spacing between the tracks for both inscription methods.

FIG. 4 The experimental set-up used for laser emission at 1.06 μ m, under the pump with fiber-coupled laser diode. L1, L2: lenses; HRM: high-reflectivity mirror; OCM: out-coupling mirror.

- Diode laser: LIMO Co., Germany: $λ_p$ = 807 nm; φ= 100 μm; NA= 0.22
- Coupling optics:

L1, f= 50 mm; **L2**, f= 30 mm

• Resonator: plane-plane **HRM:** HR at λ_{em} (1.06 μ m) HT at λ_{pump} (807 nm) **OCM:** transmission T at λ_{em} • Pumping:

- quasi continuous-wave (5 Hz, 1.0 ms)

OCM: T= 0.10	$\eta_{oa} = 0.35$	OCM: T= 0.01	η _o = 0.02	-
	η _{sa} = 0.37		η _s = 0.04	

CONCLUSION

Direct laser writing with a ps-laser beam

• The writing speed is considerably faster (1 mm/s) → the processing time is reduced to approx. 6 minutes for the entire waveguide structure of 5.9-mm;

• Laser sources delivering ps pulses presents advantages (such as the cost and the delivery of high-energy pulses), whereas the **energy transfer** from the **laser beam** to the lattice material is different from that of fs-laser beam.

FUTURE WORK / REFERENCES

References

- K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21(21), 1729-1731 (1996).
- A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, J. Mitchell, Opt. Lett. 30(17), 2248-2250 (2005).
- G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett. 92(11), 111103 (2008).
- J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, Opt. Express 18(15), 16035-16041 (2010).
- G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, Opt. Express 22(5), 5177-5182 (2014).

- G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, Opt. Mater. Express 4(4), 790-797 (2014).

https://iocp2024.sciforum.net/