ECWS-8
2024
Conference

The 8th International Electronic Conference on Water Sciences

14-16 October 2024 | Online

¹Shanza Arshad, ²Mubashra Mahmood, ²Tanveer Ahmed, ³Talal Naseer*

¹Forman Christian College, University, Lahore, 54600, Pakistan

²University of Engineering and Technology, Lahore, 39161, Pakistan

³Food and Agriculture Organization of the United Nations, Pakistan

INTRODUCTION & AIM

Water supply system (WSS) of the housing societies in cities like Lahore are mostly sustainable in terms of all major factors defined in Sustainable WSS definition except maintaining water resources for a long time especially groundwater (GW). Therefore, current study is focused to design a rainwater harvesting system (RWHS) at household level and evaluation of its effectiveness in terms of reduction in GW savings, cost saving, reduction of runoff and flooding in the society (SWMM), and effects of reduction of water demand on hydraulics of WSS (using WaterGEMS). It was found that implementation of RWHS, reduced 8.6% of average water demand and 17.38% reduction in electricity consumption. It was also found 99.50, 97.07, and 91.91% reduction in urban peak flooding from individual homes in society at return periods of 2, 5, and 10 years respectively as evaluated using SWMM. While there was around 20-24% reduction in flooding at society level. Cost of implementation of RWHS in 3, 5 and 10 Marla houses is Rs550,253, Rs670,890 and Rs1,112,283 respectively.

METHODOLOGY

Steps	Activities	Description of Data/Methods/Tools
1	Data Collection for	Society man decign criteria, monthly rainfall data for storage and

Demand Meeting the Requirements

		Cases Evaluated for Storage Volume											
		Case-I (%age)				Case-II (%age)			Case-III (%age)				
Month	ns [Cumu				Cumu				Cum
		3M	5M	10M	lative	3M	5M	10M	lative	3M	5M	10M	lative
					%				%				%
Jan		14	19	24	<u>18.9</u>	6	8	10	<u>7.9</u>	100	100	100	<u>100</u>
Feb		18	24	31	<u>23.9</u>	7	10	13	<u>9.9</u>	53	100	100	<u>95</u>
Mar		21	29	37	<u>28.8</u>	9	12	15	<u>11.9</u>	48	100	100	<u>94</u>
Apr		13	17	22	<u>17.0</u>	5	7	9	<u>6.9</u>	29	100	100	<u>93</u>
May		10	14	18	<u>13.9</u>	4	6	7	<u>5.8</u>	24	100	100	<u>92</u>
Jun		48	64	82	<u>63.9</u>	20	26	34	<u>26.0</u>	100	100	100	<u>100</u>
Jul		100	100	100	<u>100.0</u>	46	61	78	<u>60.9</u>	100	100	100	<u>100</u>
Aug		100	100	100	<u>100.0</u>	41	55	71	<u>54.9</u>	100	100	100	<u>100</u>
Sep		87	100	100	<u>98.2</u>	30	40	51	<u>39.9</u>	100	100	100	<u>100</u>
Oct		7	90	100	<u>82.7</u>	3	4	5	<u>3.9</u>	100	100	100	<u>100</u>
Nov		1	2	100	<u>9.9</u>	1	1	1	<u>1.0</u>	100	100	100	<u>100</u>
Dec		4	5	8	<u>5.1</u>	1	2	3	<u>1.9</u>	100	100	100	<u>100</u>
Annua	al	25	47	60	46	11	10	24	10	70	100	100	07.0
Averag	ge	35	41	00	40	14	19	24	19	19	100		91.9

Pressure Distributions Before and After RWHS

	the study	60 years rainfall data for IDF curves					
2	(RWHS) design and	Cases Studied:					
	Costing	Case-I = Gardening + Laundry + House Cleaning					
		Case-2 = Gardening + Laundry + House Cleaning + Toilet Flushing					
		Case-3 = Gardening + House (Cleaning				
		Methods evaluated for storage method, Equalization Method,	ge volume estimation : Ripple Web-page, General formula.				
3	Water Supply	Software used: WaterGEMS, ArcGIS, and Google Earth					
	System (WSS) Design						
4	Effects of RWHS on WSS network	Pressure distribution, pipe velo savings, economic benefits.	cities, water savings, energy				
5	Effects of RWHS	Software used:- USEPA- SWN	ЛМ				
	on Urban Flooding	% reduction in total and peak runoff at different return periods					
		 % reduction in total and periods 	eak flooding at different return				
	Rainwater Potential	% of Demand	IDF CURVE				

RESULTS & DISCUSSION

Water Supply System Design Map (WaterGEMS)

25

20

(htho 12

E 10

ď

Sewerage System with Stormwater Management System Design (SWMM)

2 Year Return

5 Year Return Period

10 Year Return Period

× 25 Year Return

🗴 50 Year Return

Period

Period • 100 Year Return

25

Period

Benefits Achieved Through RWHS

Parameters		Units	Current Values	After- RWHS	Savings (%ages)
Water Demar in the whole	nd (avg year)	m³/Yea r	1436628 (302 LPCD)	1313226.2 (276 LPCD)	<u>8.50%</u>
Energy consu (2 Tube wells BHP)	mption of 80	KW/Ye ar	691200	, 571197.52	<u>17.36%</u>
Pumping h	ours	hrs	16	13.20	<u>17.36%</u>
Peak	2-Yr	ft ³	597320.3 6	10342.18	<u>98.27</u>
Flooding (Individual	5-Yr	ft ³	1355851. 5	48938.41	<u>96.39</u>
Homes)	10-Yr	ft ³	1954924. 3	427706.78	<u>78.12</u>
Total	2-Yr	ft ³	3,122,244	2223349	<u>28.79</u>
Flooding	5-Yr	ft ³	5276030	3969116	<u>24.77</u>
(Whole Society)	10-Yr	ft ³	6920043	5,392,825	<u>22.07</u>

Cost Analysis of RWHS

Parameter	3-Marla	5-Marla	10-Marla
Individual Home Cost	Rs550,253	Rs670,890	Rs1,112,283
Cost for all homes in Society	112.8 M	1146.5 M	191.31 M
Total Cost		Rs1,450	.67 M

Pressure after RWHS (30-32 psi)

Velocity Distributions Before and After RWHS

Velocities After RWHS (1-2 m/s)

Configuration of Flush Pipe and Rain Barre

Layout of Rainwater Harvesting System

Cases Evaluated	House Size	Website	Equaliza tion Method	Ripple Method	General Formula
	3 Marla	10.00	0.91	51.53	3.14
Case I	5 Marla	15.00	6.87	58.79	5.23
	10 Marla	28.00	21.55	76.06	10.45
	3 Marla	10.00	0.00	163.69	3.14
<u>Case II</u>	5 Marla	15.00	0.00	193.25	5.23
	10 Marla	28.00	0.00	252.38	10.45
	3 Marla	10.00	10.27	17.40	3.14
Case III	5 Marla	15.00	21.82	25.25	5.23
	10 Marla	28.00	44.92	23.33	10.45

	Selected Storage Volumes									
Cases Evaluated	House Size	Required Storage (m3)	Rain Barrel (m3)	Underground Tank (m3)						
	3-Marla	10.00	3.14	6.86						
Case I	5-Marla	15.00	5.23	9.77						
	10-Marla	28.00	10.45	17.55						
	3-Marla	10.00	3.14	6.86						
<u>Case II</u>	5-Marla	15.00	5.23	9.77						
			10 45	17 55						
	10-Maria	28.00	10.40	17.00						
	10-Marla 3-Marla	28.00	3.14	7.14						
Case III	10-Maria 3-Maria 5-Maria	28.00 10.27 21.82	3.14 5.23	7.14 16.60						

CONCLUSION

Four methods for designing Rainwater Harvesting Systems (RWHS) were evaluated, with the general formula (ratio of tank volume to catchment area) 0.05m³/m² and SAMSAM Rainwater Harvesting Model proving most effective for rain barrels and total storage volume, respectively. The equalization and ripple methods have limitations based on rainfall, demand, household area, and size. Case-1 was the best fit for the study area, while case-2 was inadequate, and case-3 led to water wastage. RWHS enhances water sustainability by reducing groundwater extraction, boosting recharge, lowering energy consumption, and cutting water costs. New regulations mandating RWHS in housing societies, including filing, review, and audit procedures, are recommended.

REFERENCES

- 1. Vargas-Parra MV, Rovira-Val MR, Gabarrell X, Villalba G. Rainwater harvesting systems reduce detergent use. The International Journal of Life Cycle Assessment. 2019;24:809-23.
- 2. Vairavamoorthy K, Akinpelu E, Lin Z, Ali M, editors. Design of sustainable water distribution systems in developing countries. Bridging the Gap: Meeting the World's Water and Environmental Resources Challenges; 2001.
- Kummu M, Guillaume JH, de Moel H, Eisner S, Flörke M, Porkka M, et al. The world's road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Scientific reports. 2016;6(1):38495.
- 4. Srinivasan V, Lambin EF, Gorelick SM, Thompson BH, Rozelle S. The nature and causes of the global water crisis: Syndromes from a meta-analysis of coupledhuman-water studies. Water resources research. 2012;48(10).
- 5. Ortigara ARC, Kay M, Uhlenbrook S. A review of the SDG 6 synthesis report 2018 from an education, training, and research perspective. Water. 2018;10(10):1353.

https://sciforum.net/event/ECWS-8