

The 5th International Electronic **Conference on Foods**

28-30 October 2024 | Online

Vitamin B contents of widely cultivating new-improved rice (Oryza sativa L.) varieties of Sri Lanka

M.D.W. Samaranayake^{1*}, W.K.S.M. Abeysekera², K.R.R. Mahanama³, I.G.N. Hewajulige¹, H.P.P.S. Somasiri¹, D. M. J. B. Senanayake⁴ & G.A.S. Premakumara⁵

¹Modern Research and Development Complex (MRDC), Industrial Technology Institute (ITI), Sri Lanka, ²Department of Agricultural Technology, Faculty of Technology, University of Colombo, Techno City, Sri Lanka, ³Department of Chemistry, University of Colombo, Sri Lanka, ⁴Rice Research and Development Institute, Batalagoda, Sri Lanka, ⁵Department of Basic Science & Social Science, Faculty of Nursing, University of Colombo, Sri Lanka

INTRODUCTION & AIM

- **Rice is the dietary staple in Sri Lanka**
- The annual per capita consumption is nearly 107 kg
- More than 90% of rice cultivation in Sri Lanka accounts • new -improved rice varieties (NIRVs)

Benefits

Healthy function of brain & nervous system Helps the body to

HPLC chromatogram of vitamin B standard mix (Vitamin B₁, B₂, B₃, B₅, B₆, B₇, B₉ & B₁₂) at 266nm, 270 nm & 275 nm

Table 1. Variation of vitamin B $(B_1, B_2, B_3, B_5, B_6, B_7, B_9 \& B_{12})$ contents of selected new improved rice varieties of Sri Lanka.

Rice	Pericarp	Vitamin B content (µg/g)							
variety	colour	B ₁	B_2	B ₃	B_5	B_6	B_7	B_9	B ₁₂
At 311	Red (31.9ª	2.9^{b}	25.8^{f}	13.0 ^f	$7.4^{ m efg}$	$11.7^{ m ef}$	1.8^{b}	ND
Bg 403	White	24.1 ^b	1.5^{defg}	$35.1^{\rm e}$	18.6^{f}	$9.9^{ m bcd}$	8.8^{fgh}	ND	ND
Bg 94-1	White	24.0^{b}	1.5^{defg}	26.9^{f}	11.1^{f}	$8.3^{ m cdef}$	$3.7^{ m gh}$	$0.7^{ m de}$	ND
At 308	White	21.3^{b}	2.9^{b}	48.7^{d}	30.2^{e}	$8.0^{ m defg}$	21.4^{cd}	0.8 ^{cd}	ND
Bg 358	White	14.1 ^c	1.9 ^{cdef}	37.2^{e}	32.6^{e}	12.0 ^{ab}	24.3°	ND	ND
Bg 300	White	13.1 ^{cd}	4.3ª	82.0 ^a	56.4 ^c	13.6ª 🔇	72.5 ^a	3.1 ^a	ND
At 362	Red	12.5^{cd}	2.8^{bc}	23.1^{fg}	17.5^{f}	6.2^{fg}	2.6^{h}	1.5^{bc}	ND
At 309	White	$12.2^{ m cd}$	0.7^{g}	25.4^{f}	13.0 ^f	$9.4^{\rm cde}$	10.1 ^{fg}	0.5 ^{de}	ND
Bw 272-6b	Red	11.9 ^{cde}	1.7^{def}	71.2 ^b	82.5ª	12.4^{ab}	50.5 ^b	3.2 ^a	ND
Bg 450	White	9.9 ^{cdef}	1.4 ^{defg}	83.5 ^a	16.4 ^f	7.2^{efg}	18.8 ^{cde}	0.9 ^{cd}	ND
Bw 367	White	9.2^{def}	1.3^{efg}	20.8 ^{fg}	38.1 ^{de}	10.5^{bc}	$23.7^{ m c}$	ND	ND
Bg 352	White	7.6^{efg}	2.3^{bcd}	83.5 ^a	66.1 ^b	12.1^{ab}	57.5 ^b	2.8ª	ND
Bg 379-2	White	7.5^{efg}	2.0^{bcde}	23.2^{fg}	11.6 ^f	9.1 ^{cde}	1.6 ^h	ND	ND
At 307	White	6.3^{fg}	1.8^{def}	41.8 ^{de}	30.0 ^e	$5.7^{ m g}$	25.2^{c}	ND	ND
Bg 366	White	6.1^{fg}	1.0^{fg}	$18.2^{ m g}$	29.6^{e}	8.4^{cdef}	$15.9^{ m def}$	ND	ND
Bg 360	White	4.3 ^g	2.1^{bcde}	56.7 ^c	46.7 ^d	13.8^{a}	$23.5^{ m c}$	ND	ND

Vitamin B

This study evaluated vitamin B contents of 16 widely cultivating NIRVs in Sri Lanka

METHOD

MATERIALS: Locally grown **16 new-improved** rice varieties (namely Bg 300, Bg 352, Bg 358, Bg 360, Bg 366, Bg 379-2, Bg 403, Bg 450, Bg 94-1, Bw 272-6b, Bw 367, At 307, At 308, At 309, At 311 and At 362) obtained from Rice Research and Development Institute (RRDI), Batalagoda, Sri Lanka

Results expressed as mean value of triplicate analysis on dry weight basis of whole grain rice. Mean values in a column superscripted by different letters are significantly different at P < 0.05; ND: Not Detected

Studied rice varieties contained more of vitamins B₁, B₃, B₅ and **B**₇ among the B-complex.

CONCLUSION

The studied NIRVs of Sri Lanka comprised more of vitamin B₁, B₃, B₅ and B₇ and the contents varied among the studied rice varieties

FUTURE WORK / REFERENCES

1. Sumczynski, D., Koubová, E., Sneyd, J., Erb-Weber, S. and Orsavová, J., 2018. Preparation of non-traditional Dickkopf and Richard wheat flakes: Phenolic and vitamin profiles and antioxidant activity. LWT- Food Science & Technology, 90, 31-37.

- 2. Çatak, J., 2019. Determination of niacin profiles in some animal and plant based foods by high performance liquid chromatography: association with healthy nutrition. Journal of animal science and technology, 61(3), p.138
- 3. Ghosh, S., Datta, K. and Datta, S.K., 2019. Rice vitamins. In Rice (pp. 195-220). AACC **International Press.**

https://sciforum.net/event/Foods2024