Foods The 5th International Electronic Conference on Foods 2024 28-30 October 2024 | Online Conference

Nutritional properties of selected edible insects as food for future

Yee Ling Tan, Fuen Ann Tan, Fook Yee Chye* Food Security Research Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, 88400 Kota Kinabalu, MALAYSIA.

INTRODUCTION & AIM

Current global Issues Impact of food security Growing Shrinking global agriculture Health Hunger population land problems Climate Rising change carbon Malnutrition (**Stress** footprint War/conflict (Lin et al., 2023; Lange & Nakamura, 2021; FAO, 2018)

Current situation

World population projected to exceed 9 billion by 2050 and 10.4 billion by 2100 (United Nations, 2022).

1 in 11 people worldwide faced hunger in 2023

RESULTS & DISCUSSION

Macronutrient analysis

Nutrient content (g/100g)	Studied species									
	SP	BSF	СК	DR	GH	LC	SW	SU		
Moisture	4.52±0.32°	5.55±0.06°	3.46±0.03 ^d	3.03±0.16 ^{ef}	6.37±0.10 ^b	6.52±0.32 ^b	2.84 ± 0.04^{f}	11.20 ± 0.06^{a}		
Crude fat	52.27±0.19ª	27.6±0.04°	20.36±0.42 ^e	27.70±0.09°	5.54±0.23 ^f	5.54±0.21 ^f	23.77±0.59 ^d	35.87±0.51 ^b		
Crude protein	29.47±0.21 ^g	39.35±0.11 ^f	46.54±0.08 ^e	47.90±0.31 ^d	68.18±0.45ª	66.45±0.22 ^b	58.41±0.13°	39.09±0.34 ^f		
Carbohydrate	8.76±0.64e	23.56±0.60 ^b	27.13±0.58ª	16.63±0.70 ^c	16.28±0.16 ^c	17.76±0.78°	10.63±0.86 ^d	10.29±0.34 ^{de}		
Ash	5.38±0.15ª	5.19±0.43ª	3.46±0.03 ^b	$5.25 {\pm} 0.63^{a}$	4.65±0.23ª	4.88±0.20ª	4.65±0.72ª	4.70±0.67ª		
Energy (kcal/100g)	637.27±0.85ª	551.09±6.56 ^b	483.94±1.91 ^e	512.53±2.70°	394.03±1.45 ^f	393.10±1.36 ^f	495.58±5.03 ^d	290.58±4.20 ⁹		
	ح ر \									
		へ 「ア」	7	J J				highor		

32.6g/100g 20.1g/100g 247kcal/100g 112kcal/100g

16.9g/100g 27g/100g

13.2kcal/100g

GH, **LC** & **SW** \rightarrow higher protein content & energy content

Fatty acid content

• Fatty acids identified: Linoleic, alpha-linolenic, palmitoleic, oleic, capric, lauric, myristic, pentadecanoic, palmitic, heptadecanoic, stearic, and arachidic acids

Food production must increase by 100% to feed the growing population

Advantages of using insects as food

- Application
 - protein powder
 - insect flour
 - snacks
 - supplements
- meat alternative

 c_{0_2}

- Health benefits
 - antioxidants activities
 - anti-inflammatory
- antibacterial activities
- anti-diabetic
- anti-cancer
- anti-viral
- gastrointestinal health

(Weru et al., 2021; Zhou et al., 2022)

Nutritional benefits of Entomophagy

Factor affecting the nutritional content - insect species, diet, metamorphic stage, and environment

- Oleic acid is present in all insects, helping lower blood pressure and reduce CVD risk
- BSF is high in lauric acid, comparable to palm kernel and coconut fat
- LC & GH are rich in PUFAs, offering an alternative to fish oils
- Over 50% of fatty acids of SP are MUFAs (oleic acid)

125kcal/100g

(Ewald et al., 2020; Hirunyophat et al., 2020)

Fatty acid indices as indicator for hypocholesterolemic properties

Nutritional indices	Std	Studied species							
		SP	BSF	СК	DR	GH	LC	SW	SU
PUFA/SFA ratio	≈ 1	0.18±0.00 ^h	0.55±0.00 ^e	0.81±0.00 ^d	0.27±0.00 ^g	0.87±0.00ª	0.85 ± 0.00^{b}	0.82±0.00°	0.47±0.00 ^f
Omega 6: Omega 3 ratio	< 10	1.53±0.00°	9.32 ± 0.02^{b}	-	_	0.58±0.00 ^{cd}	$0.60{\pm}0.00^{\text{cd}}$	$0.62 \pm 0.00^{\text{cd}}$	23.27±0.11ª
Health-promoting index (HPI)	-	1.72±0.01 ^d	1.03±0.98 ^e	4.93±0.01 ^{dc}	1.16±1.42 ^d	5.77±0.08 ^b	6.07±0.04 ^b	8.38±0.19 ^a	2.07±0.05 ^d
Index of atherogenicity (IA)	-	$0.58{\pm}0.00^{\text{fb}}$	2.95±0.01ª	0.20 ± 0.00^d	0.46±0.00 ^c	0.18±0.01 ^{de}	0.17±0.01e	0.12 ± 0.00^{f}	0.49±0.01°
Index of thrombogenicity (IT)	-	1.82±0.02 ^{ef}	1.56±0.01 ^f	2.80±2.06 ^d	0.98±0.01 ^g	13.6±0.14 ^b	14.1±0.04ª	1.31±0.93°	1.92±0.21e
Hypocholesterolemic/ hypercholesterolemic ratio (h/H)	-	1.67±0.01 ^e	$0.44 \pm 0.00^{\text{f}}$	4.93±0.01°	2.21±0.01 ^d	7.12±0.05 ^b	7.27 ± 0.04^{b}	8.38±0.19 ^a	2.29±0.06 ^d

- \downarrow IA, \downarrow IT, \uparrow h/H ratio = lower risk of CVD
- GH, LC & SW had the best PUFA/SFA ratios (0.87, 0.85, 0.82)
- All samples had higher HPI than dairy
- IA & IT are comparable to meat/fish, but lower than dairy
- SW had the best lipid profile: ↓IA (0.12), ↓IT (1.31), ↑h/H (8.38).
- · Variability in indices due to lipid extraction methods & diet.

(Chen & Liu, 2020; Ewald et al. 2020)

Amino acid content

(Zhou et al., 2022; Oonincx & Finke, 2020; de Castro et al., 2018)

Objectives

- 1.To determine the proximate composition of edible insects.
- 2. To evaluate the amino acid and fatty acid profile of edible insects.
- 3. To determine which insects could be a potential source of future food.

METHODS

Macronutrients analysis

- 1. Moisture content
- 2. Ash content
- 3. Crude protein content
- 4. Crude fat content
- 5. Total carbohydrate content

Nutrient profile determination

1.Fatty acid profile - Dietary indicators (PUFA/SFA, n-6:n-3, IA, IT, h/H HPI) 2. Amino acid profile

(Wang et al., 2015; Kavle et al., 2023)

ð

(AOAC, 2012)

His Thr Val Met Trp Phe I e Leu Lys Asp Glu Asn Ser Gln Gly Arg Ala Tyr Cys Nor Hyp Sac Pro

- Met (tissue growth, metabolism) & Leu (protein synthesis, growth hormones) are the main EAAs across samples
- •GH & DR: rich in Leu (9.44 mg/g, 9.37 mg/g)
- SW & DR: higher Gly, Asp & Glu \rightarrow rich, meaty flavour
- •SW has the best amino acid ratio (E/T %) 57.52%

CONCLUSIONS

- **GH**, **LC** and **SW** could be excellent sources of alternative proteins
- LC could be potentially a healthy food for future

FUTURE WORK / REFERENCES

- 1.Evaluate the safety and allergenicity of selected insects List of references
- 2. Functional properties of products made from insects
- 3.Innovative products from insects and their acceptance

https://sciforum.net/event/Foods2024