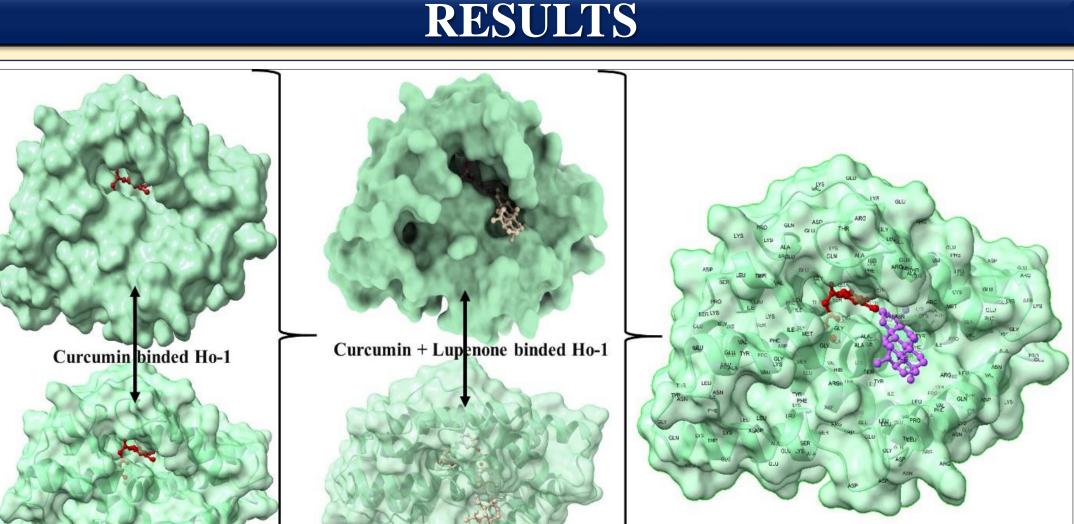
Enhancing Soybean Drought Resilience with Natural Foods 2024 Conference **Compounds: How Curcumin and Lupenone** MDPI Influence Heme Oxygenase-1


Kahkashan Perveen¹, Asma A. Al-Huqail¹, Sandip Debnath²*, Alanoud T. Alfagham¹, Faheema Khan¹, Fakhrul Islam Monshi³ ¹Chair of Department of Botany & Microbiology, College of Science, King Saud University, Riyadh-11495, Saudi Arabia ²Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan, West Bengal-731236, India ³Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet-3100, Bangladesh

sandip.debnath@visva-bharati.ac.in

Article ID: sciforum-098266

INTRODUCTION

- > Climate change has intensified challenges for crops, leading to increased abiotic stresses, such as drought, that impact yield and economic viability.
- \succ Modulating phytohormone signaling pathways offers a promising strategy to enhance crop resistance to environmental stressors.
- \succ This study investigates the role of heme oxygenase 1 (HO-1), a vital enzyme in plant stress response pathways, including phytohormonal interactions.
- \succ The focus is on improving soybean's drought resilience through the synergistic action of the naturally derived bioactive compounds Curcumin and Lupenone.

This research aims to investigate the **potential of Curcumin and Lupenone to** enhance drought resistance in soybeans by modulating HO-1 activity through molecular docking and dynamics simulations, elucidating their role in reinforcing adaptive responses via phytohormone signaling pathways.

MATERIALS AND METHODS

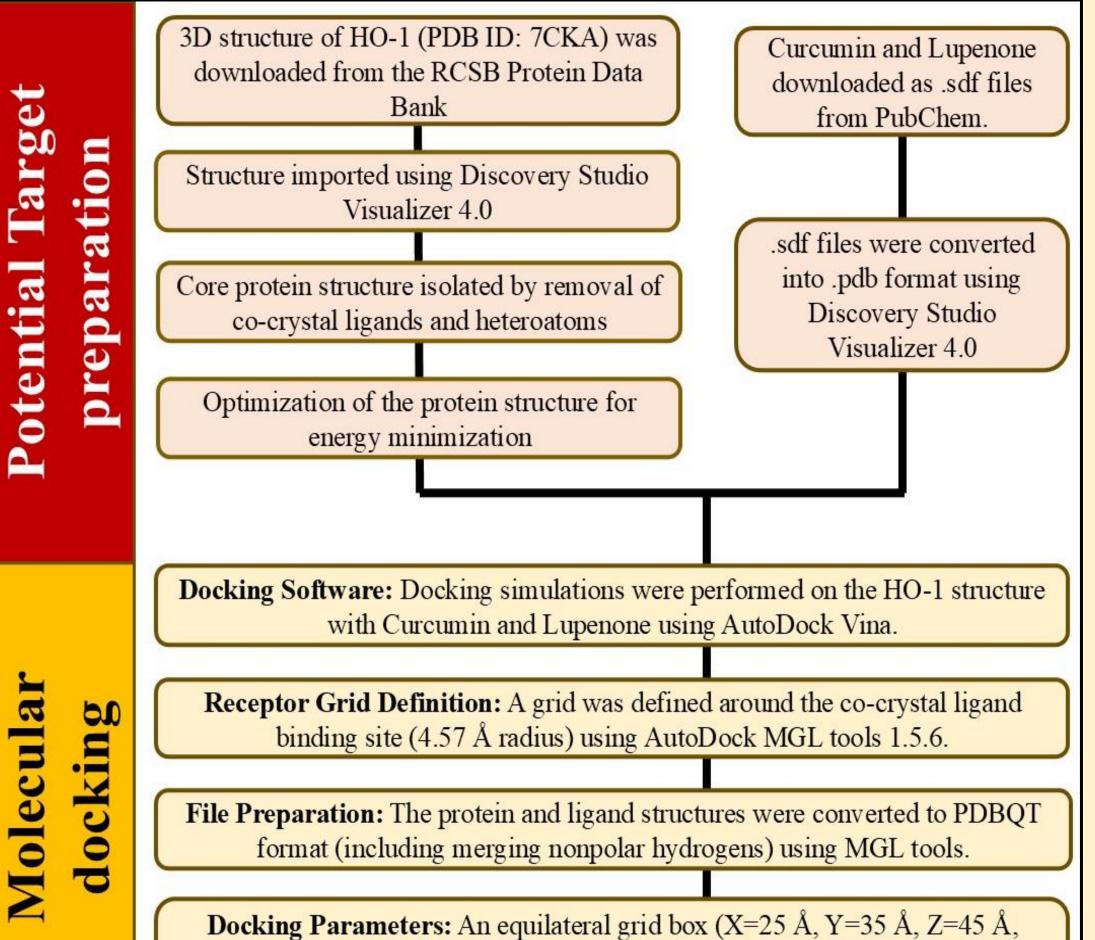


Figure 1 - Analysis of the docked posture of 7CKA-Curcumin+Lupenone; were displayed the ligand bound at the pocket of the receptor 7CKA and the binding pocket residues interacted with the ligand displayed.

Table 1. Molecular Docking of 10 selected Phyto-chemicals upon prior binding with Curcumin.

SI. No.	Primary ligand selected	Second phytochemical compound names	Binding energy (Kcal/mol)
1.		Mangiferin	-5.60
2.		Barbalonin	-4.56
3.		Jasmonic acid	-4.87
4.		Brassino steroid	-7.33
5.		Capilobenzofuranol	-5.22
б.	Curcumin	Lupenone	-12.57
7.	(-7.81 kcal/ mol)	Salicylic acid	-8.41
8.		Strigolactones	-7.12
9.		Ethylene	-6.37
10.		Wedelosin	-5.67

- > Re-docking indicated deep binding in the protein pocket with a binding energy of -10.97 kcal/mol and Ki of 0.12 mM, underscoring their synergistic effect.
- \succ The C- α backbone RMSD of the 7CKA protein showed high stability, fluctuating only by 1.1 Å, while the Curcumin-Lupenone complex remained consistent over 100 ns.
- > The RMSF analysis confirmed stability, but after 100 ns, the Curcumin-Lupenone-bound protein showed a 2 Å deviation at residues 37, 50-52, 150, 67, and 200 from the reference structure.

spacing=5.64 Å) and Lamarckian Genetic Algorithm (LGA) were used for docking.

Simulation Software: A 100 ns MD simulation was performed using Desmond software (Schrödinger LLC).

System Setup: Orthorhombic fluid box models with OPLS 2005 force fields were utilized. The NaCl concentration was set to 0.15 M, and counterions were added for system stability.

Data Collection: RMSD of the protein and ligand, as well as MD trajectories, were recorded every 100 ps. RMSF was utilized to analyze protein backbone flexibility during the simulation.

Simulation Conditions: The temperature was maintained at 300 K, and the pressure was maintained at 1 atmosphere throughout the simulation.

- \succ The **Rg plot of the C-a backbone** revealed that the 7CKA protein exhibited Rg values between 14.7 to 15.0 Å, reflecting significant compactness with an average change of only 0.4 Å over the 100 ns simulation.
- > The simulation formed three hydrogen bonds, enhancing binding and drought resistance, indicating a stable interaction of the complex.
- \blacktriangleright **MM-GBSA analysis** revealed \triangle GbindCoulomb, \triangle GbindvdW, and \triangle GbindLipo significantly contributed to complex stability, while Δ GbindCovalent and Δ GbindSolvGB indicated instability.

CONCLUSION

This study paves the way for experimental validation of the Curcumin + Lupenone complex's effects on HO-1 activity and its role in phytohormone signaling, enhancing our understanding of drought resistance mechanisms in soybean and informing strategies to improve crop drought tolerance.

