

The 5th International Electronic Conference on Foods

28-30 October 2024 | Online

PROFILE OF SOY ISOFLAVONES IN FOOD SUPPLEMENTS

Amidžić Maja, Torović Ljilja, Mikulić Mira

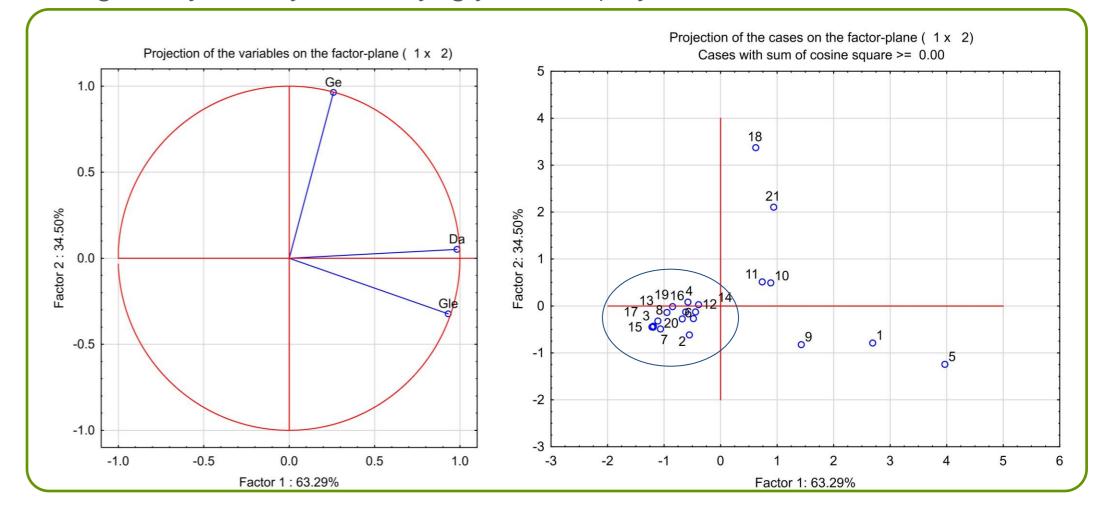
University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000, Novi Sad, Serbia

INTRODUCTION & AIM

Food supplement industry's ability to bring high-quality soy isoflavonecontaining products to market is of particular importance for well-being of postmenopausal women, who utilize these products the most.

Supplement labels commonly contain only the total amount of **soy isoflavones** - actual isoflavone profile could influence the biological effects: isoflavone aglycones, glycitein, daidzein and genistein, do not have the same potency for binding to estrogen receptors, a step necessary for the manifestation of their activity.

RESULTS & DISCUSSION


A broad range of total isoflavone content, 0.05-71.0 mg/dose unit expressed as total aglycone equivalents (mean value 20.4 mg/dose unit).

METHOD

21 commercial supplements with soy extract, intended mostly for relief of menopausal symptoms.

Sample preparation: a portion equivalent to an average mass of 10 tablets/capsules measured from the pulverized material and extracted with 80% aq. methanol.

Analytical isoflavones profiling (daidzein, glycitein, genistein, as well as their glucosyl, acetyl, malonyl glycosides) by HPLC-DAD.

The total isoflavone content deviated from the labeled value less than \pm 10 % in two supplements only, while the overall range of deviations was from -94.3 to +18.0%.

Isoflavone composition: genistein and daidzen, each with its glycosides, were on average equally abundant, participating with 43% of the total isoflavones, although the former showed greater variations in content (standard deviation 14 *vs.* 24%), while glycitein and its glycosides amounted for the remaining 14%.

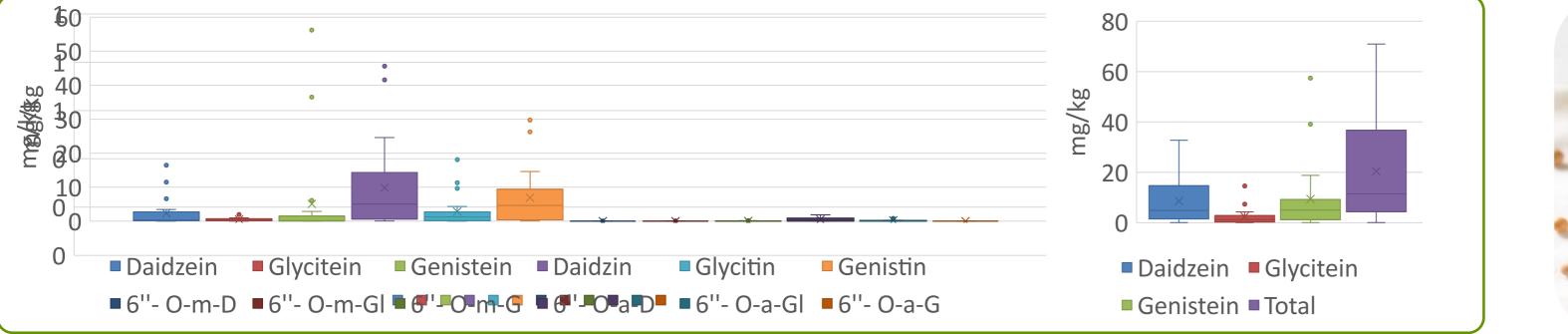
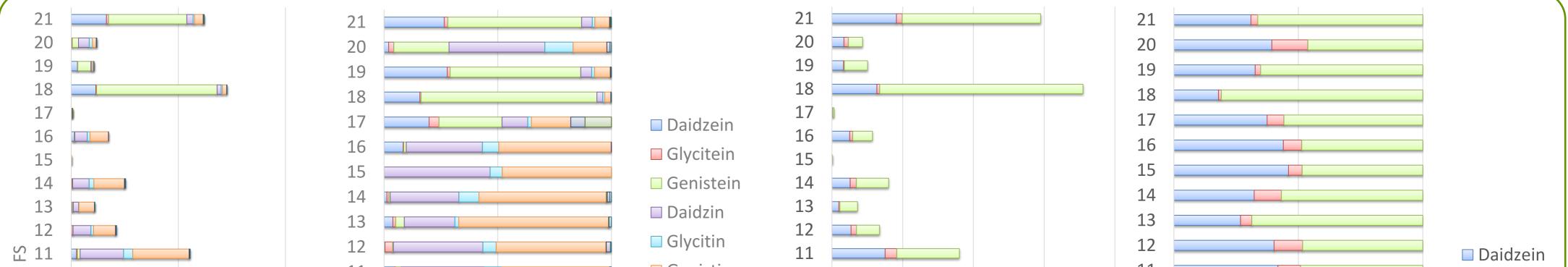



Figure 1. Box-Whisker plot of distribution of isoflavone (aglycone) concentrations in supplements (whiskers extend from min to max, 🗆 interquartile range, – median, × mean)

10	11	Genistin 10	11 Glycitein
9	10	□ 6''- O-m-D 9	
8 🛛	9	□ 6''- O-m-Gl 8 □	9 Genistein
7 🛛	8	□ 6''- 0-m-G	8
6	7	6 6 6''- O-a-D 5	7
5	6	J	6
4	5	□ 6''- O-a-Gl 4	5
3	4	□ 6''- O-a-G 3	4
2	3	2	3
	2		2
0 50	100 1	0 20 40 60	80 1
mg/kg	0% 50% 100%	mg/kg	0% 50% 100%

Figure 2. Mean content and composition of individual isoflavones in soy supplements (A) concentration, (B) % share in total isoflavones (m-malonyl, a-acetyl, D-daidzin, GI-glycitin, G-genistin)

CONCLUSION

Quality of soy-based supplements varies greatly (amount of isoflavones, deviation from the labeled content, isoflavone profiles). A need for better control of the production process (plant extract standardization).

FUTURE WORK / REFERENCES

Assessment of human health benefit of soy isoflavones intake through soy supplements.

https://sciforum.net/event/Foods2024