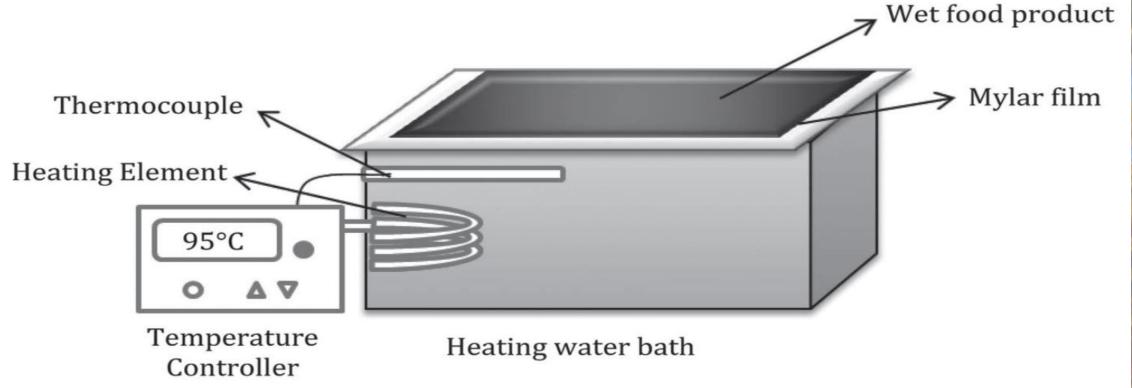


CONDUCTIVE HYDRO DRYING OF RED AND BROWN SEAWEED SOURCES FROM SOUTHERN COASTAL ZONE

I. Mamtha Shafika, P. Santhoshkumar, J.A. Moses*

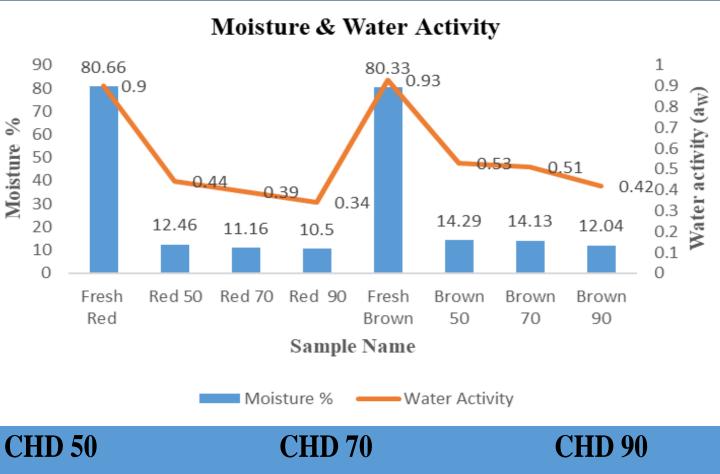
Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Tamil Nadu, India * moses.ja@iifpt.edu.in


Abstract: Conductive hydro drying (CHD), also known as refractance window drying (RWD), is a low-temperature non-thermal drying method. This study examines the

drying of Kappaphycus alvarezii and Turbinaria conoides using CHD. Initially, their moisture content is about 80%, but it is reduced to around 10.50 % for Kappaphycus

alvarezii and 12% for Turbinaria conoides after the process effectively preserves nutritional and bioactive components, with water activity levels of 0.34 a_w and 0.42 a_w,

respectively. The dried products also show minimal color change, making CHD a superior alternative to traditional drying methods while maintaining quality and nutrition.


Methodology

Results

The highest moisture reduction occurred at 90°C, achieving 10.50% for red seaweed and 12% for brown seaweed. In this study, the drying temperature was directly proportional to color changes; higher temperatures resulted in greater ΔE values, while lower temperatures produced smaller values. CHD effectively preserves pigments like phycoerythrin and fucoxanthin, maintaining color integrity. A linear relationship was observed between moisture content and water activity; as moisture decreases, water activity also declines. The lowest water activity for red and brown seaweed was noted at 90°C, measuring 0.34 a_w and 0.42 a_w respectively. The process of convective heat transfer involves all three modes of heat transfer, but conduction is the dominant mode

Color Value					Sample	CHD 50	CHD 70	CHD 90
Sample	L	a	b	ΔΕ	variant			
Fresh Red	10.70 ± 0.19	0.30 ± 0.04	$\textbf{0.44} \pm \textbf{0.01}$	-	Kappaphycus alvarezii	27356	- Data las	ATTE
Red CHD 50	11.24 ± 0.11	0.50 ± 0.02	$\boldsymbol{0.55 \pm 0.08}$	0.59 ± 0.02	Turbinaria conoides			
Red CHD 70	11.36 ± 0.13	0.56 ± 0.01	$\boldsymbol{0.72 \pm 0.02}$	0.76 ± 0.01				
Red CHD 90	11.53 ± 0.12	1.14 ± 0.02	1.39 ± 0.05	1.52 ± 0.02				
Fresh Brown	11.67 ± 0.03^{a}	$\textbf{0.84} \pm \textbf{0.02}$	1.41 ± 0.04	-				
Brown CHD 50	$\textbf{20.40} \pm \textbf{0.14}$	1.65 ± 0.01	$\textbf{4.53} \pm \textbf{0.01}$	09.30 ± 0.13				
Brown CHD 70	21.38 ± 0.10	1.66 ± 0.01	$\textbf{4.70} \pm \textbf{0.01}$	10.28 ± 0.01				
Brown CHD 90	22.13 ± 0.01	1.88 ± 0.01	$\boldsymbol{5.18 \pm 0.02}$	11.16 ± 0.01				

Somple

Conclusion

QRecent research emphasizes the effectiveness of CHD in achieving low moisture content, reducing water activity, and maintaining excellent

color retention in both dried red and brown seaweed.

Compared to traditional drying methods, CHD shows superior preservation of quality.

The CHD preserves both quality and nutritional content.

□ Future studies could investigate the scalability and economic feasibility of using CHD for industrial-scale seaweed drying.

References

- Gupta, S., Cox, S., & Abu-Ghannam, N. (2011). Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT Food Science and Technology, 44(5), 1266–1272. https://doi.org/10.1016/j.lwt.2010.12.022
- Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Conductive hydro drying through refractance window drying An alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Drying Technology, 38(5–6), 610–620. https://doi.org/10.1080/07373937.2019.1624972
- Yoha KS, Moses JA, Anandharamakrishnan C (2020) Conductive hydro drying through refractance window drying An alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Dry Technol 38:610–620. https://doi.org/10.1080/07373937.2019.1624972

www.niftem-t.ac.in