

The 5th International Electronic Conference on Foods

28-30 October 2024 | Online

Valuing endogenous and thermal resources in the production of healthy food: chestnut by-product flour with thermal water

Ana Cristina Gonçalves¹, André Lemos^{2,4}, Maria José Alves^{2,3,4}

¹Faculty of Sciences, University of Vigo, Campus As Lagoas s/n, Ourense, Spain
 ²AquaValor – Centre for Development and Transfer of Water Technology – Association, Chaves, Portugal
 ³CIMO– Mountain Research Centre, Polytechnic Institute of Bragança, Alameda Santa Apolónia 5300–253, Portugal
 ⁴Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Portugal.

^{*} e-mail [*corresponding authors: <u>acqgoncalves@gmail.com</u>; <u>maria.alves@ibp.pt</u>; <u>andre.lemos@aquavalor.pt</u>]*

INTRODUCTION

ηn Π There is a gap between food, nutrition and public health policies and the population's economic capacity to practice healthy eating. It is imperative to invest in food sustainability that guarantees access to nutritious and safe food.

Endogenous resources and thermal waters are two aspects that promote regional tourism in

RESULTS & DISCUSSION

DATA REVIEW - Different manufacturing procedures for chestnut flour

CASE 1: Type of thermal process: roasting and boiling

Roasted chestnuts possessed higher protein, fiber, citric acid, gallic acid, and total phenolic contents while boiled chestnuts had higher fat, soluble fiber, gallic and ellagic acids, and total phenolic contents when compared to raw chestnuts.

THE AIM OF THE STUDY

Contribution of the incorporation of thermal waters into the sustainable production of chestnut flour with chestnut by-products:

Test the feasibility of using chestnut by-products, shells, and hedgehogs in flour production.

Evaluate the chemical and nutritional contribution of incorporating thermal water in the production of chestnut flour.

Valuing endogenous gastronomy by using thermal chestnut flour in culinary recipes.

CREATING FORMULATIONS BY DIFFERENT PROCESSES

Summary Table 1- Preparation of samples of chestnuts, shells and sea hedgehogs with water

 Dry chestnut 	 Dry chestnut shells 	 Fresh chestnut hedgehog
 Roasted chestnut 	 Roasted chestnut shells 	
 Cooked chestnut with drinking water 	 Cooked chestnut shells with drinking water 	
 Cooked chestnut with thermal water 	 Cooked chestnut with Thermal Water 	
Chestnut 🥢	Chestnut shells	Chestnut hedgehog

CASE II: Cooking time: 10 min.; 30 min.; 50 min.

In this study, it was found that protein content decreases as the cooking time increases. As for fiber, CC flours (raw chestnut) and CZ3 flours (cooked chestnut-10 min) were those that presented the highest values. The fat content decreases as the cooking time increases, fifty minutes, in which case the flour acquires a rancid odor.

Variable: Type of thermal process

CASE I

Table 1. Primary and secondary metabolite composition of raw, boiled, and roasted chestnuts. Means (n = 33) \pm standard deviations followed by the same letter within a line are not significantly different at p < 0.05. (adapted from [1])

Parameters	Raw	Boiled	Roasted
Dry mass (g/100g edible)	46,8 ± 2,88	42,1 ± 2,60	54,2 ± 3,46
Ash (g/100g DW)	2,06 ± 0,29	1,75 ± 0,23	2,11 ± 0,29
Protein (g/100g DW)	6,51 ± 1,38	6,28 ± 1,12	6,72 ± 1,21
Fat (g/100g DW)	3,20 ± 0,75	3,33 ± 1,07	3,08 ± 0,56
Insoluble fibre (g/100g DW)	13,9 ± 2,41	14,1 ± 2,16	20,0 ± 3,21
Soluble fibre (g/100g DW)	1,06 ± 0,36	1,66 ± 0,63	1,65 ± 0,72
Total fibre (g/100g DW)	13,7 ± 2,21	15,4 ± 1,70	20,1 ± 2,99
Citric acid (mg/100g DW)	396 ± 259	592 ± 292	634 ± 175
Malic acid (mg/100g DW)	322 ± 101	123 ± 137	253 ± 152
Gallic acid (mg/kg DW)	10,9 ± 5,81	13,6 ± 3,02	13,7 ± 6,23
Ellagic acid (mg/kg DW)	6,32 ± 7,06	12,2 ± 5,61	8,62 ± 4,97
Total phenolics (mg/g DW)	16,2 ± 2,10	16,5 ± 2,77	19,3 ± 2,57

Variable: Cooking time

Table 2. Results of the compositional analyses carried out on the flours obtained, expressed on a wet and dry basis . (adapted from [2])

Donomotono	Chestnut by-products flour samples						Reference values dried		
Parameters (%)	Raw chestnut (CC)		Cooked Chestnut (CZ1-30 min)		Cooked Chestnut (CZ2-50 min)		Cooked Chestnut (CZ3-10 min)		chestnuts (INSA, 2016)
	humid base	dry base	humid base	dry base	humid base	dry base	humid base	dry base	humid base
Moisture	7,13 ± 0,06	-	6,95 ± 0,15	-	0,48 ± 0,11	-	6,42 ± 0,13		9,90
Dry extract	-	92,87 ± 0,06	-	93,05 ± 0,15	-	99,52 ± 0,11	-	93,58 ± 0,13	90,1
Protein	4,92 ± 0,01	5,29 ± 0,02	3,60 ± 0,05	3,86 ± 0,05	3,62 ± 0,05	3,64 ± 0,05	3,80 ± 0,08	4,06 ± 0,08	5,10
Fibre	10,00*	10,77*	8,56*	9,20*	9,04 ± 0,99	9,08 ±0,99	10,20 ± 1,25	10,90 ± 1,33	11,30
Ash	1,55 ± 0,02	1,67 ± 0,02	2,88 ± 0,03	3,09 ± 0,04	1,11 ± 1,11	1,12 ± 0,02	1,22 ± 0,02	1,30 ± 0,02	2,10
Lipid	2,28 ± 0,12	2,46 ± 0,12	2,76 ± 0,2	2,97 ± 0,22	1,30 ± 0,35	1,31 ± 0,35	2,68 ± 0,02	2,86 ± 0,02	2,00
Carbohydrates	74,12 ± 0,08	79,81 ± 0,13	75,26 ± 0,42	80,92 ± 0,29	84,45 ± 0,81	84,87 ± 0,70	75,77 ± 1,29	80,90 ± 1,24	70,00

Remarks: repeat the process for chestnuts from Trás-os-Montes and Galicia chestnuts and thermal water from Chaves and Durense.

DATA REVIEW - Different processing effects manufacturing procedures for chestnut flour

CASE I : Type of thermal process: roasting and boiling

CASE II: Cooking time: 10 min.; 30min.;50 min.

CONCLUSION

The cooking processes affected the chemical composition of the chestnut, providing a positive effect in terms of the digestibility of macromolecules such as proteins and fibers. Chestnut flour cooked for 10 minutes has a higher fiber content compared to other cooking times. Cooked chestnuts are a good source of phenolic compounds and organic acids and are low in fat.

ACKNOWLEDGMENTS

This work is part of the doctoral Programme in Water, Sustainability and Development at the **University of Vigo**, Durense Campus, Spain. It also has the support of **AquaValor** - Centre for Development and Transfer of Water Technology - Association, Chaves, Portugal.

REFERENCES

Gonçalves, B., Borges, O., Costa, H. S., Bennett, R., Santos, M., & Silva, A. P. (2010). Metabolite composition of chestnut (Castanea sativa Mill.) upon cooking: Proximate analysis, fiber, organic acids, and phenolics. Food Chemistry, 122(1), 154-160.
 Borges, A. R. D. (2017). Produção de farinha sem glúten: valorização de subprodutos do processo de fabrico de castanha congelada (Doctoral dissertation).

https://sciforum.net/event/Foods2024