

The 2nd International Electronic Conference on Clinical Medicine

13-15 November 2024 | Online

Haematological profile of congenital heart disease patients undergoing surgical correction: A case-control observation study from North India

Shadab Ahamad¹⊠, Prachi Kukshal¹, Ajay Kumar¹, Anagha Tulsi², Amita Sharma², Paramvir Singh²

¹Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India-121102

²Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, Palwal, Haryana, India-121102 Email: <u>shadab1997ansari@gmail.com</u>

INTRODUCTION

7.9 million children are born with birth defects worldwide annually, among them ~ 28 % are only congenital heart diseases (CHDs)[1]

Detection

~ 90 % patients don't have adequate access to essential diagnostics while ~ 40 % CHDs can be diagnosed by fetal sonography.^[2]

Intervention

✓ 0.5 per million people get intervention, resulting ~ 40 % deaths & 4th contributor to Global Infant Mortality in low-med. income countries (LMICs).^[2]
✓ Average cost of Cardiac Intervention: INR 2–5 Lakhs (USD 2400-6000)

Prevention

✓~ 30-40 % causal factors are either genetic or epigenetic, rest ~ 60 % is unknown.^[3]
✓~ 74 % of Indians couldn't afford a healthy diet.

Complete blood count (CBC) is a routine diagnostic test in clinical settings & has been suggested to be predictive of cardiovascular diseases.^[4]

OBJECTIVE

To find correlation of CBC indices with CHD and hospital status of patients

METHODOLOGY

- ✓ Study Design: Case-control retrospective observational study
- ✓ IEC Approved with Written Informed Consent
- ✓ Exclusion: Patients who had recent blood/platelet transfusion, iron supplementation, syndromic features, or any chronic disorders

[#]Statistical Tests: Student *t*-test, χ2 test and Multivariate logistic regression

RESULTS & DISCUSSION

Case-control and gender based association of CBC indices with CHD

Variables	Trend (P value w.r.t. controls)			P value within cases	
	All CHD Cases	Acyanotic CHD	Cyanotic CHD	Acyanotic Vs Cyanotic CHD	Males Vs Females
BMI	↓ (0.000)	↓ (0.000)	↓ (0.000)	0.340	0.310
Pulse	(0.000)	(0.000)	(0.000)	0.520	0.620
SpO ₂	↓ (0.000)	↓ (0.001)	↓ (0.000)	0.000	0.008
RBC	↓ (0.920)	↓ (0.000)	(0.000)	0.000	0.003
MCV	↓ (0.000)	↓ (0.000)	↓ (0.004)	0.010	0.120
RDW	(0.420)	1 (0.740)	(0.040)	0.045	0.310
Hematocrit	↓ (0.001)	↓ (0.000)	(0.000)	0.000	0.040
Platelets	(0.100)	1 (0.030)	♦ (0.470)	0.002	0.910
Hemoglobin	↓ (0.004)	↓ (0.000)	(0.000)	0.000	0.020
MCH	↓ (0.005)	↓ (0.002)	♦ (0.350)	0.550	0.090
MCHC	(0.010)	^ (0.001)	♦ (0.480)	0.001	0.510
Lymphocytes	(0.000)	(0.000)	(0.000)	0.860	0.180
PLR	↓ (0.000)	↓ (0.000)	↓ (0.000)	0.002	0.290

BMI: body mass index; SpO_2 : oxygen saturation; *RBC:* red blood cell; *MCV:* mean corpuscular volume; *RDW:* red cell distribution width; *MCH:* mean corpuscular hemoglobin; *MCHC:* mean corpuscular hemoglobin conc.; *PLR:* platelet-to-lymphocyte ratio; \uparrow : increased; Ψ : decreased. Significant P values are in **bold** font.

CONCLUSION

~ 20 % CHD patients require treatment within 1st year of life, hence early diagnosis play a vital role in the overall survival rate.
(The simplicity perpendicity properties of the second seco

✓ The simplicity, reproducibility, wide availability and cheaper cost of the CBC test shows its advantage for disease diagnosis in LMICs.

✓ *Replication in a larger cohort* can give a more validated conclusion & give an insight into blood biomarkers for prognostic evaluation of the disease.

ACKNOWLEDGEMENT

The authors thank the patients who underwent cardiac treatment at **Sri Sathya Sai Sanjeevani International Hospitals-** *a Totally free of cost tertiary care centre*, for their participation.

REFERENCES

[1] Christianson A, *et al. March of Dimes.* 2006.
[2] Saxena A. *Indian Pediatr.* 2018;55:1075–1082.
[3] Hoffman JI, *et al. J Am Coll Cardiol.* 2002; 39(12):1890-1900.
[4] Monterio JG, *et al. Curr Cardiol Rev.* 2019; 15:274-282.

Correlation of CBC indices with diagnosis & hospitalization of patients

Scan to access full study

https://sciforum.net/event/IECBM2024