

The 28th Intl. Electronic Conference on Synthetic Organic Chemistry

15-30 November 2024 | Online

Synthesis of 2,6-disubstituted BODIPY dyes using palladium-catalyzed cross-coupling reaction with indium organometallics and indium-catalyzed alkyne hydroarylation reactions

Ana Da Lama, José Pérez-Sestelo, Luis A. Sarandeses, M. Montserat Martínez

CICA – Centro Interdisciplinar de Química e Bioloxía and Departamento de Química Universidade da Coruña, 15071 A Coruña, Spain

MDP

Introduction

Cross-coupling reactions using indium organometallics. Synthetic applications

Adv. Organomet. Chemi. 2023, 80, 177.

Electrophilic activation of C–C unsaturated bonds using indium(III)

Org. Biomol. Chem. **2018**, 16, 5733; J. Org. Chem. **2021**, 86, 9515; Org. Chem. Front. **2022**, 9, 6894; Synthesis **2023**, 55, 1714; Adv. Synth. Cat. **2024**, 366, 852.

BODIPY scaffold: properties and applications

Properties

- Neutral total charge
- High brightness
- Large fluorescent quatum yields
- Photochemical stability
- High lipophilicity
- Chemical robustness
- Synthetic versatility

BODIPY

4,4-difluoro-4-bora-3a,4a-diaza-s-indacene

Applications

- Fluorescent sensors
- Imaging probes
- Optoelectronic devices
- Photoredox catalysis
- Photodynamic therapy sensitizers
- Theranostic agents
- NIR probes to diagnose Alzheimer disease

Boens, N.et al. Coord. Chem. Rev. 2019, 399, Coord. Chem. Rev. 2020, 419, 213375.

Synthesis of 2,6-disubstituted BODIPY dyes by palladium-catalyzed cross-coupling reactions using indium organometallics (R₃In) and indium(III)-catalyzed alkyne hydroarylation reactions

R₃In

R¹

Me

Me

Pd_{cat}

solvent, T

Ме

 \mathbb{R}^2

Ме

Mé

Me

Mé

R²

 $R_{3}^{2}ln$

Org. Biomol. Chem. 2022, 20, 9132.

- <section-header><section-header><section-header><section-header><image><image>
- + One step
- + Short reaction times
- + Low temperatures
- + Minimum amount of solvent
- + Broad scope
- + Good yields
- + Scalability

2

2

Synthesis of 2,6-disubstituted BODIPY dye 5a from 4a by indium(III)-catalyzed phenylacetylene hydroarylation

Synthesis of 2,6-disubstituted BODIPY dyes by indium(III)-catalyzed arylalkyne hydroarylation

J. Org. Chem. 2024, 89, 7, 4702

Photophysical properties

Comp.	λ _{max} ^{Abs} (nm) (ε(M ⁻¹ cm ⁻¹))	λ_{max}^{PL} (nm)	Φ_{F}
3 a	521 (65030)	538	0.78 ^b
3b	523 (75594)	540	0.79 ^b
5a	526 (64944)	552	0.72 ^c
5b	540 (77698)	565	0.14 ^c
5 C	520 (38421)	554	0.96 ^c
6a	523 (79174)	543	0.79 ^c

Ē

5

- > Spectra were recorded in CHCl₃ solutions at room temperature at $7.5 \cdot 10^{-7}$ M for UV-Vis and PL spectra, excited at the respective under λ_{max} .
- > Fluorescence quantum yields for **3a-3b** were determined relative to fluoresceine in NaOH 0.1 M as standard ($\Phi_{\rm F}$ = 0.92).
- > Fluorescence quantum yields of **5a-5c** and **6a** were determined relative to rhodamine 6G in as standard ($\Phi_{\rm F}$ = 0.94 in EtOH).

Conclusions

1) Palladium-catalyzed cross-coupling reactions using indium organometallics (R_3In) with 2,6-dihalogenated BODIPYs afforded the dicoupling products with atom economy in moderate yields.

2) Indium(III)-catalyzed intermolecular double hydroarylation reactions of arylalkynes with *meso*-substituted BODIPYs provide branched 2,6-dialkenyl BODIPYs with Markovnikov regioselectivity in excellent yields.

3) The resulting BODIPYs displayed fluorescence emissions from 538 to 565 nm and high quantum yields (up to $\Phi_{\rm F}$ = 0.96).

