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Abstract: Alkaloids are naturally occurring metabolites with a wide variety of pharmacological ac-

tivities and applications in science, particularly in medicinal chemistry as anti-inflammatory drugs. 

Since they could be labelled as active or inactive compounds against the inflammatory biological 

response, the aim of this work was the calibration of quantitative structure-activity relationships 

(QSARs) based on machine learning classifiers to predict anti-inflammatory activity based on the 

molecular structures of alkaloids. The dataset of 100 alkaloids (58 active and 42 inactive) was re-

trieved from two systematic reviews. Molecules were properly curated, and the molecular geome-

tries of the compounds were optimized by the semi-empirical method (PM3) to calculate molecular 

descriptors, binary fingerprints (extended-connectivity fingerprints and path fingerprints) and 

MACCS (Molecular ACCess System) structural keys. Then, we calibrated QSAR models based on 

well-known linear and non-linear machine learning classifiers, i.e., partial least squares discriminant 

analysis (PLSDA), random forests (RF), adaptive boosting (AdaBoost), k-nearest neighbors (kNN), 

N-nearest neighbors (N3) and binned nearest neighbors (BNN). For validation purposes, the dataset 

was randomly split into a training set and a test set in a proportion of 70:30. When using molecular 

descriptors, genetic algorithms-variable subset selection (GAs-VSS) were used for the supervised 

feature selection. During the calibration of the models, a five-fold venetian blinds cross-validation 

was used to optimize the classifier parameters and to control the presence of overfitting. The per-

formance of the models was quantified by means of the non-error rate (NER) statistical parameter. 
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1. Introduction 

Inflammation is a crucial homeostatic and defense mechanism in the human body, 

triggered by mechanical, chemical, or microbial stimuli that affect vascularized tissues. It 

is a complex process that begins when damaged tissue cells release pro-inflammatory me-

diators like histamine and prostaglandins. These mediators cause vasodilation, increasing 

blood flow to the affected area, leading to redness, heat, pain, edema, and loss of function. 

Vascular permeability also increases, and neutrophils are attracted to the injury site, 

where they phagocytize pathogens. After the harmful agents are removed, the anti-in-

flammatory mediators promote tissue repair [1]. Although inflammation is a protective 

response, dysregulation at various stages can lead to chronic inflammation and tissue 
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damage, which can contribute to diseases such as arthritis and cancer. While there are 

many anti-inflammatory agents, non-steroidal anti-inflammatory drugs (NSAIDs) that in-

hibit the cyclooxygenase enzymes, COX-1 and COX-2 have proven efficacy; however, they 

have adverse side effects [2]. Medicinal chemists within the pharmaceutical industry are 

searching for new and effective anti-inflammatory agents. 

In this context, alkaloids have gained significant importance in medicinal chemistry 

due to their anti-inflammatory activity. It has been demonstrated that alkaloids reduce the 

production of pro-inflammatory cytokines such as TNF-α and interleukins (IL-1, IL-6), 

which inhibit the NF-κB pathway, decrease prostaglandin synthesis, and reduce cellular 

infiltration into inflamed tissues, thereby preventing various aspects of the inflammatory 

process [3]. Alkaloids constitute a large group of organic compounds derived from the 

secondary metabolism of plants, fungi, and microorganisms, which have a common char-

acteristic of the presence of nitrogen atoms in their structure. These compounds are gen-

erally colorless, odorless, bitter, crystalline, and, in some cases, amorphous or liquid at 

room temperature [4]. 

A well-known strategy to study and predict the anti-inflammatory activity of com-

pounds involves the development of cheminformatic models based on quantitative struc-

ture-activity relationships (QSARs) [5]. In this framework, we calibrated diverse QSAR 

models for the anti-inflammatory activity of 100 alkaloids. Molecules were properly rep-

resented by diverse molecular features, which were modelled using six well-known ma-

chine learning classifiers. QSAR models were developed following the principles stated 

by the Organization for Economic Cooperation and Development (OECD) [6]. 

2. Materials and Methods 

2.1. Alkaloids Database Description 

For the development of the anti-inflammatory alkaloids database, we considered two 

systematic reviews [3,7]. These authors listed alkaloids with the corresponding anti-in-

flammatory activity (active, inactive, or weakly active) measured in different experimental 

assays. Alkaloids labelled as weakly active were merged into the inactive class. Since only 

42 non-active alkaloids were available in the database, we randomly selected a balanced 

number of active compounds (58 molecules) to complete a database of 100 molecules. The 

chemical information of the molecules was verified in the PubChem open access library 

[8], where we also retrieved the Chemical Abstracts Service (CAS) registry number and 

PubChem CID. 

2.2. Molecular Structure of Alkaloids and Feature Representation 

The chemical structures of the alkaloids were designed in the HyperChem software 

[9]. Then, the geometries were optimized with the PM3 semiempirical method until the 

gradient vector became less than 0.01 kcal (Å mol)−1. The molecular structures of alkaloids 

were curated to check for potential errors by using the diverse tools implemented in the 

alvaMolecule software [10,11], along with generation of the canonical SMILES (Simplified 

Molecular Input Line Entry System). Table S1 in the supplementary material shows the 

information of the curated database. Then, the alvaDesc software [10,11] was used to com-

pute diverse sets of molecular features [5]: (1) 5633 molecular descriptors (MDs); (2) 166 

MACCS (Molecular ACCess System) structural keys; (3) 1024 extended-connectivity fin-

gerprints (ECFPs); and (4) 1024 Path Fingerprints (PFPs). When working with MDs, we 

excluded non-informative features. Subsequently the V-WSP unsupervised variable re-

duction method [12] was used to further reduce the presence of molecular descriptors 

with multicollinearity, redundancy and noise. 

2.4. Machine Learning Classifiers 

Since anti-inflammatory activity is a qualitative discrete response, we used diverse 

machine learning classifiers to calibrate linear and non-linear quantitative structure-
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activity relationships for the discrimination between the active and inactive alkaloids. In 

this work, we used six classifiers: (1) Partial Least-Squares Discriminant Analysis (PLSDA) 

[13], that combines the properties of partial least squares regression (PLS2-based method) 

with the ability of a discrimination classifier by calculating latent variables (LVs); (2) k-

Nearest Neighbors (kNN) [14], which is a nonparametric local-based method that classi-

fies a molecule by means of the majority vote of its k closest neighbors; (3) N-Nearest 

Neighbors (N3) [15] that classifies an alkaloid considering the class of all the n − 1 mole-

cules, in which the contribution to the class assignment is sorted in a vector with the sim-

ilarity rank; (4) Binned Nearest Neighbors (BNN) [15], which considers the majority vote 

for a variable number of k neighbors defined by similarity intervals (bins) where alkaloids 

are distributed; (5) Random Forest (RF) [16], which is a non-linear ensemble learning that 

constructs several decision trees (sub-samples) and uses the averaging prediction by com-

bining them; and (6) Adaptive Boosting (AdaBoost) [17], which is another ensemble clas-

sifier that sequentially fits decision trees and then calibrates additional models by adjust-

ing the weights of the misclassified molecules in such a way as the subsequent decision 

trees pay more attention to them. 

2.5. Supervised Feature Selection 

To find the most informative subset of molecular features, PLSDA and kNN classifi-

ers were coupled with the Genetic Algorithms-Variable Subset Selection (GAs-VSS) [18]. 

The GA-VSS creates an initial population of models (also called chromosomes) in a ran-

dom way. Each model consists of a binary vector that indicates the presence/absence of 

features in the model. Then, new models are created by combining the initial chromo-

somes (also called crossover) or by a random inclusion/exclusion of MDs (also known as 

mutation). This evolutionary process optimizes the non-error rate classification parameter 

in cross-validation. 

2.6. Validation Performance 

The reliability of QSAR models is related to the application of cross-validation pro-

cedures to analyze internal model stability, as well as external validation to quantify the 

model’s predictiveness. To this end, the database of 100 alkaloids was randomly split into 

training and test sets in a proportion of 70:30, maintaining the class proportions in both 

sets. Alkaloids of the training set were used to calibrate the models and to measure the 

internal models’ stability in cross-validation by means of the five-fold venetian blinds ap-

proach. Finally, test set alkaloids were used to check the predictive ability of the models. 

For all the classifiers, we analyzed the non-error rate (NER) [19]. 

3. Results and Discussion 

The database of 100 alkaloids was randomly split into a training set and test set of 70 

and 30 molecules, respectively (refer to Table S1 for splitting assignment). Initially, we 

used the molecular descriptors to calibrate models based on the PLSDA, kNN, RF and 

AdaBoost classifiers. After the exclusion of non-informative descriptors, 3335 features 

were reduced by means of V-WSP unsupervised variable reduction using a correlation 

threshold of thr = 0.90. Thus, 936 molecular descriptors were retained to calibrate models 

in two instances: (1) models that use conformation independent features only; and (2) 

models with the complete pool of descriptors (0D, 1D, 2D and 3D features). The super-

vised selection of MDs for the PLSDA and kNN classifiers was performed by the GA-VSS. 

The optimal number of LVs and k for the PLSDA and kNN, respectively; were optimized 

using five-fold venetian blinds cross-validation. The same process was used to optimize 

the hyperparameters for the RF (minLeafSize: minimum number of observations per tree 

leaf and n_trees: number of trees to be grown) and AdaBoost (maxNumSplits: maximal 

number of decision splits per tree, LR: learning rate and n_trees: number of trees) ensemble 

classifiers. This optimization process led to eight models (Table S2). 
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The best quantitative-structure–anti-inflammatory relationship based on MDs was 

obtained with the kNN classifier (Table 1). This model used six neighbors and two fea-

tures: distance/detour ring index of order 9 (D/Dtr09) and P_VSA-like on mass, bin 2 

(P_VSA_m_2). Figure 1 shows the chemical space defined by these two descriptors, where 

a non-linear separation is clearly defined. 

Table 1. Non-error rate classification performance of the best QSAR models using MDs and ECFPs. 

Molecular Feature Type Classifier Optimal Parameters Training Set Cross-Validation Test Set 

Molecular descriptors kNN k = 6; MDs = 2 0.71 0.76 0.77 

Extended-connectivity fingerprints BNN α = 0.9 0.75 0.75 0.81 

 

Figure 1. Chemical space of the quantitative structure–anti-inflammatory activity of alkaloids for 

the training set. The D/Dtr09 and P_VSA_m_2 features are autoscaled. Blue and Red indicate the 

class spaces related to active and inactive anti-inflammatory alkaloids, respectively. 

The D/Dtr09 descriptor is an index calculated as a quotient of the distance and detour 

matrices (D/Δ), which is a symmetric matrix whose off-diagonal elements are the ratio of 

the lengths of the shortest over the longest path between any pair of vertices. The row 

sums have been proposed as local invariants with high capability to discriminate between 

branching vertices (small row sums) and bridging vertices (large row sums) [5,20]. In ad-

dition, the P_VSA_m_2 feature defines the amount of van der Waals surface area (VSA) 

having the mass property withing the values of the range for bin two: [1,1.2). This de-

scriptor corresponds to a partition of the molecular surface area conditioned by the atomic 

values of the mass [5,21]. For instance, the Vincaleukoblastine (D/Dtr09 = 878.3 and 

P_VSA_m_2 = 241.8) and Ignavine (D/Dtr09 = 492.8 and P_VSA_m_2 = 100.9) active anti-

inflammatory alkaloids are the largest molecules having diverse cycles, including both 

aromatic and internal. In contrast, the inactive alkaloids Arecoline (D/Dtr09 = 0.0 and 

P_VSA_m_2 = 49.0) and Choline (D/Dtr09 = 0.0 and P_VSA_m_2 = 27.3) are characterized 

by small molecules and the low presence of cycles in their scaffolds (Figure 2). 
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Figure 2. Alkaloids with positive (Vincaleukoblastine and Ignavine) and negative (Arecoline and 

Choline) anti-inflammatory activity. 

In a second step, we used a pool of 166 MACCS, 1024 ECFPs and 1024 PFPs to cali-

brate models using the kNN, N3 and BNN local-based classifiers. The Jaccard-Tanimoto 

distance was used to quantify the similarity between pairs of alkaloids. Table S3 shows 

the classification performances of the calibrated quantitative structure–anti-inflammatory 

relationships. In this case, the best model corresponded to the ECFPs and the BNN classi-

fier (Table 1). In fact, ECFPs exhaustively enumerated all fragments in the chemical scaf-

fold into a fixed-length vector, which presented an effective way for molecular represen-

tation and a similarity search. Thus, the anti-inflammatory activity prediction of alkaloids 

depends on the use of a variable number of k neighbors to contribute to the majority vote 

to the class assignment. 

4. Conclusions 

In this work, quantitative structure-anti-inflammatory relationships based on ma-

chine learning classifiers has been developed to discriminate between active and inactive 

alkaloids. The chemical structure of alkaloids was represented by diverse molecular fea-

tures. When using molecular descriptors, a two-feature model with the kNN classifier 

emerged as the optimal one. On the other hand, when using binary features, the best 

model was achieved using the ECFPs and the BNN classifiers. It is important to note that 

anti-inflammatory activity prediction depends on locally based classifiers. Thus, the mod-

els developed here could assist medicinal chemists to better understand the mechanism 

involved in the chemical structure of alkaloids, as well as the prediction of novel natural 

or synthetic alkaloids to be used as anti-inflammatory agents. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Table S1: Details of the database of active/inactive anti-inflammatory alka-

loids; Table S2. QSAR models for the anti-inflammatory activity using molecular descriptors; Table 

S3. QSAR models for the anti-inflammatory activity using binary structural keys and fingerprints. 
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