

Late-stage peptide modifications through S-imination enable chemoselective installation of free-NH sulfilimines and sulfoximines

<u>Shanal Gunasekera</u>¹, Alla Pryyma¹, Jimin Jung¹, Rebekah Greenwood¹, Brian O. Patrick¹, and David M. Perrin^{1*}

¹University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1

*Corresponding author: <u>dperrin@chem.ubc.ca</u>

Sulfur Pharmacophores in Drug Discovery and Design

Vanacore et al. Science 2009, 375, 1230-1237; Tilby, M. J., Willis, M. C. Expert Opinion on Drug Discovery 2021, 16:11, 1227-1231; Mäder, P., Kattner, L. J. Med. Chem. 2020, 63, 23, 14243–1427; Lücking, U. Chem. Eur. J. 2022, 28, e2022019

CPPC

Applications of S-Imination in Medicinal Chemistry

Am. Chem. Soc. 2008, 130, 5052-5053

CPPC 2024

S-N Bio-isosterism in α -amanitin

JB

CPPC

2024

Pryyma et al. Chem. Sci. 2020, 11, 11927-11935

Synthesis Strategies to access Sulfilimines, Sulfoximines, and Sulfondiimines

Harger, M. J. P. J. Chem. Soc. Perkin Trans. 1 **1981**, 3284–3288; Benkovics et al. Org. Synth. **2020**, *97*, 54–65

CPPC

DPPH as an Excellent Iminating Agent to access Sulfiliminium Salts

¹H NMR (300 MHz, DMSO) of crude reaction in THF

150-. 100-

50-

[a] % Conversion determined using ¹H-NMR spectral analysis of crude reaction mixtures and HPLC analysis (at 280 nm) of the crude reaction mixture.

DMSO

CPPC 2024

DPPH as an Excellent Iminating Agent to access Sulfiliminium Salts

JBC NA

CPPC

DPPH as an Excellent Iminating Agent to access Sulfiliminium Salts

UBC

NH₂

3.23 (2H)

45.06

1H-13C HMBC

П

¹H-¹³C HMBC 6.03 (2H)

TFA⁻

Hol

Н

Bioisosterism: Sulfiliminium vs Sulfoxide

CPPC

DPPH mediated access to free-NH[,] Sulfoximines

Isolated yields reported for cpds 3a-3r and 3w; [a] % conversion determined from reverse-phase HPLC; [b] one-pot imination and then oxidation method in which the imination solvent was removed by evaporation or lyophilization followed by oxidation in the presence of Na₂CO₃

CPPC 2024

Stereochemical assignment of 5-OH Ama Sulfoximine (Major

OH 0

5.45

5.40

5.35

5.30

5.25

5.30

- Energy minimized model for (R)sulfoximine analogue of 5'-OH(Trp) Amanitin constructed using molecular operating environment (MOE) program
- Highlighted in green lines are inter-Hydrogen distances (10⁻¹⁰ m)

CPPC

2024

Bioisosterism: Sulfoximine vs Sulfone

CPPC

Conclusions and Future Directions

¹⁴ 2024

Acknowledgements

• Prof. David M. Perrin

- Dr. Alla Pryyma
- Jimin Jung
- Rebekah Greenwood

-Dr. Maria Ezhova (NMR services)
-Jessie Chen (UBC Bioservices)
-Dr. Brian Patrick (XRD Services)

Canadian Institutes of Health Research Instituts de recherche en santé du Canada

