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Abstract: The brewing industry is expanding with the rise of many small breweries. These are typ-

ically small and medium-sized enterprises producing a few hectoliters of beer per batch, often with 

limited investment capacity for equipment. Centrifugal pumps play a crucial role in microbreweries, 

facilitating the movement of wort throughout various stages of the brewing process. Failures in 

these systems, such as valve positioning issues or blockages, can lead to longer production times, 

increased energy consumption, and potential quality issues. This study explores a soft sensor ap-

proach for developing IFDs (Intelligent Fault Detection systems) by using pump drive data—cur-

rent, torque, and power factor—without the need for additional sensors. Data was collected via a 

managed switch, and models were trained using Support Vector Machine and Multilayer Percep-

tron algorithms. The results indicate that this IFD method holds great potential for enhancing auto-

mation and maintenance in small breweries. 
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1. Introduction 

In recent years, the brewing industry has stood out, particularly with the growth of 

microbreweries, which have significantly contributed to product diversification and inno-

vation in the sector, thus boosting the brewing landscape in Brazil. The Brazilian brewing 

market has experienced continuous and significant growth over the last few years. In 2019, 

the country had 1209 registered breweries, a number that increased to 1847 in 2023, rep-

resenting a 52.77% increase during this period, demonstrating the resilience of the sector 

despite the economic challenges posed by the COVID-19 pandemic. This expansion high-

lights not only the strength of the industry but also the increasing consumer demand for 

craft beer and innovative products, which has driven both domestic market growth and 

international interest [1]. 

Given this scenario, the early detection of failures in centrifugal pumps can help en-

sure the continuity and efficiency of production processes. Intelligent Fault Detection 

(IFD) plays a key role in monitoring the operational health of machines and equipment, 

flagging potential anomalies in processes and allowing for the implementation of correc-

tive measures that prevent greater losses [2]. This method, increasingly popular in condi-

tion monitoring, combines physical sensors with software models, using easily 
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measurable variables to estimate process parameters that would otherwise be costly or 

difficult to measure due to technical limitations, measurement delays, or complex envi-

ronments [3]. 

These technological advancements have the potential to expand the use of Intelligent 

Fault Detection systems in industrial applications, where they are critical for ensuring re-

liability and operational health in production processes [4]. The aim of this study is to 

investigate and develop predictive systems capable of efficiently identifying failures re-

lated to pump inlet and outlet blockages using machine learning techniques. The chal-

lenge lies in the fact that this approach eliminates the need for additional or specialized 

sensors, making it particularly appealing to microbreweries, which operate with limited 

resources for advanced automation, and aligns with Industry 4.0 trends. 

2. Background 

2.1. Intelligent Fault Diagnosis  

Intelligent Fault Detection (IFD) refers to the application of machine learning theories 

to diagnosing machine failures. This method aims to reduce the reliance on human labor 

by automatically recognizing the health states of machines. Traditionally, fault diagnosis 

heavily depended on the experience and knowledge of engineers, however, with advance-

ments in machine learning theories such as Artificial Neural Networks (ANNs) and Sup-

port Vector Machines (SVMs), it has become possible to develop diagnostic models that 

learn from collected data. These models can establish the relationship between monitoring 

data and machine health states, minimizing human intervention [5]. 

2.2. Support Vector Machine 

Support Vector Machine (SVM) is a widely used supervised learning model for clas-

sification, particularly efficient in recognizing health states, such as diagnosing failures in 

pumps, motors, and other mechanical systems. Initially, the SVM algorithm could only 

classify two linearly separable classes of data, known as hard-margin SVM. Over time, the 

algorithm was improved, allowing it to classify non-linearly separable and noisy data, 

through the introduction of the kernel function (K) concept and the implementation of the 

box constraint (C) to minimize classification errors [6]. 

These improvements made SVM more robust in handling noise and outliers by opti-

mizing the hyperplane’s position through the adjustment of the C hyperparameter and 

the Gaussian kernel [5]. 

𝐾(𝑥𝑖𝑛 , 𝑦𝑖𝑛) =  𝑒−γ|𝑥𝑖𝑛,𝑦𝑖𝑛|2
 (1) 

2.3. Multilayer Perceptron  

Artificial Neural Networks (ANNs), inspired by the functioning of the human brain, 

are a powerful tool for diagnosing machine failures. They consist of multiple layers of 

interconnected neurons, where input data passes through hidden layers and is mapped 

to a desired output. Each neuron applies an activation function that processes the received 

data and transmits it to the next neurons. During training, the weights of these connec-

tions are adjusted to minimize the error between the network’s prediction and the actual 

response. This process allows the ANN to learn to identify complex patterns, making it 

effective in various diagnostic applications. 

3. Proposed Method 

3.1. The Microbrewery Pilot Plant 

The project was developed in the brewing pilot plant at the Federal Institute of São 

Paulo, Sertãozinho campus. The control panel was adapted to collect RMS electric current, 

torque, and power factor data from the centrifugal pump, which were provided by the 

electric drive and sent to the plant’s programmable controller via a PROFINET 
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communication network. The frequency inverter controls the operation of the centrifugal 

pump according to a rotational setpoint indicated by the operator through the program-

mable controller, and all of this data is made available as feedback. These data points are 

often discarded or underutilized but can be applied to detect and diagnose the investi-

gated faults in the system. Figure 1 illustrates the schematic of the adaptation made to the 

control panel of the brewing pilot plant. Essentially, the adaptation involves configuring 

a managed switch with port mirroring capability, enabling it to copy the packets ex-

changed between the PLC and the frequency inverter. The components of the control 

panel used in this adaptation are detailed in Table 1. 

 

Figure 1. Control Panel of the Brewing Pilot Plant. 

Table 1. Components of the Pilot Microbrewery’s Control Panel. 

 Item Feature 

1 PLC PLC S71200 CPU1214C 

2 Frequency Inverter SINAMICS G120 

3 Sniffer SCALANCE TAP104 

4 Motor/Pump Hydrobloc P500 

5 Edge-based IFD Wireshark with Python environment 

3.2. Data Collection Description 

For data collection, the centrifugal pump from the wort filtration stage was used. 

During this stage, the pump is either used to recirculate the wort or transfer it to the lau-

tering stage. The pump was operated under a healthy condition and two fault conditions: 

one where the inlet was blocked and another where the outlet was blocked, both simulated 

by a valve. Data from the PROFINET network was collected using a sniffer, with the 

Wireshark software capturing network traffic and saving it in .PCAP files. To interpret 

this data, an algorithm was developed in Python using the Scapy library to process the 

.PCAP files. Figure 2a presents an example of raw PROFINET data, while Figure 2b shows 

the corresponding data in Wireshark, highlighting information such as current speed, 

electric current, torque, and power factor. 

The data from the frequency inverters used in the centrifugal pumps are expressed 

as percentages relative to the nominal values set in the engineering tools. These values can 

range from −200% to 200% of the configured nominal value, depending on the parameter 

being analyzed. It’s worth noting that the data interpretation follows the PROFIdrive pro-

file of the PROFINET protocol, although it can be easily adapted to other real-time Ether-

net protocols. 
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Figure 2. Raw data attributes from a PROFINET data packet: a = Current Speed, b = Electric Current, 

c = Motor Torque, d = Power Factor. 

To build the dataset, all packets sent within a one-second time interval were consid-

ered. Given that the inverter has an update rate of one millisecond, each sample accounts 

for a thousand data points for each variable investigated. A feature extraction step was 

applied to these raw signals. For this, a specific algorithm was developed to extract statis-

tical features from the signals, ultimately enabling the creation of the dataset. The ex-

tracted attributes are presented in Table 2. 

Table 2. Equations of the Attributes Investigated for Each Measured Variable. 

Feature Equation  

Mean value 𝑆1(𝑥) =  
∑ (𝑥𝑖)

𝑛
𝑖=1

𝑛
 (2) 

Standard Deviation 𝑆2(𝑥) =  √
∑  (𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥𝑖))2𝑛

𝑖=1

𝑛 − 1
 (3) 

Max. Value 𝑆3(𝑥) = 𝑚𝑎𝑥|𝑥𝑖| (4) 

Difference between max. and 

min. value 
𝑆4(𝑥) = 𝑚𝑎𝑥|𝑥𝑖| − 𝑚𝑖𝑛|𝑥𝑖| (5) 

Entropy 𝑆5(𝑥) =  
∑  𝑙𝑜𝑔10𝑥𝑖

2𝑛
𝑖=1

𝑛 − 1
 (6) 

Min. Value 𝑆6(𝑥) = 𝑚𝑖𝑛|𝑥𝑖| (7) 

Kurtosis 𝑆7(𝑥) =

1
𝑛

∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥𝑖))2𝑛
𝑖=1

[
1
𝑛

∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥𝑖))2𝑛
𝑖=1 ]

2 (8) 

Root Mean Square (RMS) 𝑆8(𝑥) = √
1

𝑛
∑|𝑥𝑖|

𝑛

𝑖=1

 (9) 

Skewness 𝑆9(𝑥) =
1

𝑛
∑

(𝑥𝑖 − 𝑥)3

𝜎3

𝑛

𝑖=1

 (10) 

These attributes were extracted from the RMS electric current, torque, and power fac-

tor signals. The current speed value was not considered, as the inverter used does not have 

an encoder, making it impossible to obtain an accurate rotational speed measurement. 

Initially, we analyzed the raw data to identify exploratory opportunities, examining 1-s 

operation samples for the three selected attributes (Current, Torque, and Power Factor) in 

each operation of the experimental setup (normal condition, inlet blockage, and outlet 

blockage). 

Figure 3 illustrates the system’s behavior under normal conditions, where the varia-

ble values remain within the expected limits, showing a stable and consistent pattern. 

However, when comparing this condition to Figures 4 and 5, which represent the inlet 
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and outlet blockage failure conditions, respectively, a significant difference in values can 

be observed. In failure scenarios, the graphs exhibit more pronounced fluctuations, with 

considerable variations in the monitored parameters, reflecting the negative impact of the 

blockages. 

An interesting observation can be made when comparing the graphs in Figures 4 and 

5. Despite representing failures in different parts of the system (inlet and outlet), the pat-

terns in the variable behavior are quite similar. This suggests that both inlet and outlet 

blockages have comparable effects on the system’s performance, resulting in data charac-

teristics that, in many cases, may be visually difficult to distinguish. These graphs high-

light how both failure conditions produce similar anomalies in the monitored variables, 

even though the physical causes of the issues are distinct. 

 

Figure 3. Behavior of the variables during 1 s of sampling in normal condition at 1000 RPM. 

 

Figure 4. Behavior of the variables during 1 s of sampling with inlet blocked at 1000 RPM. 

 

Figure 5. Behavior of the variables during 1 s of sampling with outlet blocked at 1000 RPM. 

3.3. Training the IFDs 
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Before training the models, the data was normalized to standardize the variable 

scales, an essential step to avoid features with different magnitudes disproportionately 

influencing the algorithm. Below, you can observe the PCA (Principal Component Anal-

ysis) graph in Figure 6, which works by identifying directions (called principal compo-

nents) along which the data exhibits the most variation. These directions are linear com-

binations of the original variables, and the PCA ranks these directions based on how much 

variance (information) they capture. 

 

Figure 6. Principal Component Analysis. 

The dataset was divided into 80% for model training and 20% for testing, selected 

randomly. For the SVM-based models, the soft margins functionality was used, with hy-

perparameters C = [0.01, 0.1, 1, 10, 100] and a Gaussian kernel, where the kernel scale 

parameter gamma = [0.01, 0.1, 1, 10, 100] was also considered. 

For the Multilayer Perceptron models, two hidden layers were used. The training al-

gorithm employed was Adam (Adaptive Moment Estimation), an efficient optimizer that 

adjusts the learning rate adaptively for each parameter in the network, enabling faster and 

more stable convergence. The hidden layers used the ReLU activation function, and the 

output layer used the sigmoid function, ideal for predicting the two classes. The number 

of neurons in both hidden layers was set to n = [1, 5, 10, 15, 20]. Performance evaluation 

for the SVM and ANN (MLP) algorithms was based on key indicators, such as accuracy, 

false positive rate (FPR), and false negative rate (FNR). Accuracy measures the proportion 

of correct classifications relative to the total samples, while FPR indicates how often incor-

rect classifications were made as positive. FNR, on the other hand, reflects the proportion 

of positive cases that were not detected. These metrics are crucial for understanding how 

well the models perform in different classification scenarios. 

3.4. Performance Evaluation  

Performance evaluation for the SVM and ANN (MLP) algorithms was based on indi-

cators like accuracy, false positive rate (FPR), and false negative rate (FNR). Accuracy 

measures the proportion of correct classifications relative to the total samples, while FPR 

indicates how often incorrect classifications were made as positive. FNR reflects the pro-

portion of positive cases that were not detected. 

4. Results and Discussion 

Table 3 summarizes the performance metrics, including accuracy, false positive rate 

(FPR), false negative rate (FNR), the gamma parameter (γ), which represents the kernel 
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scale, and the smoothing coefficient C, which controls the penalty for classification errors. 

The models were tested using different feature combinations, ranging from all 27 features 

to specific subsets like current, torque, and power factor. The model using all features 

performed the best, achieving 90.15% accuracy, with a gamma of 0.01 and a smoothing 

coefficient of 10. 

Table 3. Results for SVM-based models. 

 N. of Features Feature Accuracy FPR FNR γ C 

All 27 F1 to F27 90.15% 11.90% 8.40% 0.01 10 

Current 
9 F1 to F9 75.37% 27.38% 22.69% 0.01 100 

1 F1 75.86% 19.05% 27.03% 100 10 

Torque 
9 F9 to F18 87.19% 20.24% 7.56% 0.1 100 

1 F10 79.80% 38.10% 7.56% 0. 1 0.1 

Power Factor 
9 F19 to F27 89.66% 15.48% 6.72% 0.1 100 

1 F19 87.68% 13.10% 11.76% 1 0.1 

The results obtained with Artificial Neural Networks (ANN) models were evaluated 

using the same feature sets as SVM. Table 4 summarizes the performance metrics, includ-

ing accuracy, false positive rate (FPR), false negative rate (FNR), as well as the number of 

neurons in the hidden layers, represented by N1 and N2. The model using the full feature 

set achieved an accuracy of 89.66%, with an FPR of 10.71%, configured with 15 neurons in 

the first hidden layer and 10 neurons in the second. 

Table 4. Results for ANN-based models. 

 N. of Features Feature Accuracy FPR FNR N1 N2 

All 27 F1 to F27 89.66% 10.71% 6.28% 15 10 

Current 
9 F1 to F9 75.86% 22.62% 14.35% 10 1 

1 F0 74.88% 9.52% 19.37% 15 20 

Torque 
9 F9 to F18 88.18% 16.67% 5.29% 20 20 

1 F10 79.31% 30.95% 8.21% 1 20 

Power Factor 
9 F19 to F27 90.64% 10.71% 5.29% 15 15 

1 F19 87.68% 13.10 7.25% 1 5 

5. Conclusions 

The results show that the SVM model with 27 features achieved an accuracy of 

90.15%, while the ANN model, with the same attributes, reached 89.66%. Although both 

demonstrate competitive performances, the SVM slightly outperformed in overall accu-

racy. However, when isolating the power factor, the ANN model achieved 90.64% accu-

racy, slightly higher than the SVM, suggesting that this attribute is particularly relevant 

for the task. 

The analysis of a reduced feature space, such as the power factor, consumes fewer 

computational resources than running models with 27 attributes. The best individual re-

sults came from the averages of current (F0), torque (F9), and power factor (F18). In SVM, 

tuning parameters such as gamma (γ) and C is critical, just as the neural network struc-

ture, including the number of neurons, is essential in ANN models. The possibility of us-

ing fewer attributes without significant loss in performance enhances processing effi-

ciency and suggests that simpler models may be preferable in practical applications 

Additionally, the implementation of diagnostic techniques, as discussed in this 

study, can be relevant to the context of Industry 4.0. The use of sniffers for communication 

data collection can be complemented by IIoT sensors, which enable real-time extraction of 

operational information from the Profinet network, such as performance metrics and op-

erating conditions of centrifugal pumps. This integration facilitates cloud-based data 
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processing, where advanced analyses can be conducted to predict failures and optimize 

maintenance. In this way, companies can not only enhance operational efficiency but also 

implement proactive predictive maintenance strategies, ultimately reducing costs and im-

proving data-driven decision-making. 

Future research could benefit from techniques like deep learning and transfer learn-

ing, as they allow the extraction of more complex features and the adaptation of pre-

trained models to new tasks with minimal data. These approaches could improve the ac-

curacy and robustness of the models, particularly in challenging scenarios with limited 

datasets. 
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