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Abstract: Tool Condition Monitoring (TCM) systems have become increasingly important in 

industrial automation due to the need to improve efficiency and reduce manufacturing costs. These 

systems use advanced sensors to capture signals during machining processes, allowing for early 

detection of faults and prediction of tool life. This study explores the potential of using the Cosine 

Similarity (CS) method as a practical technique for analyzing acoustic emission (AE) signals and 

monitoring tool wear during milling operations. Acoustic signals were applied to the CS method 

under reference conditions and after potential damage. We used 9000 samples of the milling cutter 

passing over the workpiece, collected from experiments with milling machines using the AE sensor 

WD925 at a frequency of 100 kHz. The CS method tracked wear proportionally in each case. As the 

tool wore down, its similarity to the intact tool decreased, proving to be an effective indicator for 

condition monitoring. However, the change in CS calculation was not as pronounced as the tool 

wear observed, suggesting that having enough data is crucial for this methodology in condition 

monitoring. A longer sampling period is necessary to capture significant signal variations and 

effectively detect losses in similarity. This provides a significant amount of data and, as a result, 

leads to more conclusive findings for the process in question. 
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1. Introduction 

Tool Condition Monitoring (TCM) systems have 

become essential in driving the transformation of 

industrial automation, particularly in the context of 

Industry 4.0. Their importance stems from the increasing 

demand to boost production efficiency while reducing 

costs in today’s highly competitive manufacturing 

landscape [1,2]. By incorporating state-of-the-art 

sensors and sophisticated data analysis, TCM enables 

continuous, real-time monitoring of tool conditions and 

predicts their remaining useful life (RUL), marking a 

significant leap forward in the management of 

industrial assets [3]. 

In precision machining processes like milling 

operations, TCM plays a critical role in ensuring quality and reliability by providing 

accurate, real-time monitoring of tool conditions. This allows for the early detection of 
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issues such as abnormal wear, breakages, cracks, micro-cracks, and even catastrophic 

failures. By identifying these problems in advance, TCM helps maintain the integrity of 

manufacturing processes while optimizing production, enhancing operational efficiency, 

and reducing waste [4]. 

Moreover, the ability to adjust operations in real-time not only improves product 

quality but also fosters sustainability by minimizing resource consumption and waste 

generation. TCM also enables precise forecasting of maintenance needs, shifting 

traditional corrective or preventive maintenance practices toward more advanced 

predictive and prescriptive strategies. This extends the lifespan of equipment and tools, 

ensuring uninterrupted production and boosting the competitiveness of companies in the 

global market [5,6]. 

The use of acoustic emission sensors and piezoelectric transducers has become 

increasingly popular in the context of TCM [7]. These devices capture acoustic signals 

generated during machining processes, providing critical information about tool 

conditions. This allows for the early detection of failures by analyzing acoustic activity 

and the behavior of corresponding electrical signals. 

Advanced digital signal processing techniques, such as time series analysis [8], time-

frequency analysis [2,9] and wavelet transform [10], are applied to analyze data from these 

sensors. These methods enable the extraction and selection of relevant features related to 

the phenomenon under study. Such approaches are essential for isolating critical 

information that aids in interpreting the acoustic data captured [11]. 

Unlike traditional acoustic emission (AE) signal analysis methods, which focus on 

specific parameter values, the cosine similarity (CS) method emphasizes the similarity in 

the waveform of the AE signal. This approach suggests that under normal operating 

conditions, AE signals demonstrate high similarity and stability, indicating the absence of 

anomalies [12]. However, when tool failures or wear occur, the signals become unstable 

and show lower similarity. Therefore, irregularities in tool conditions can be efficiently 

identified by calculating the cosine similarity between AE signals, facilitating continuous 

monitoring [13]. 

The objective of this study is to explore the potential and feasibility of applying 

distance-based metrics, such as condition indicators based on the cosine similarity 

method, to monitor tool wear during milling operations. The milling process is essential 

in modern manufacturing due to its versatility in creating complex shapes, precision in 

meeting tight tolerances, and ability to achieve high-quality surface finishes. This research 

is expected to increase productivity, reduce manufacturing costs, optimize tool life, 

minimize the risk of significant damage during milling, and enable prompt corrective 

actions when damage is detected. 

2. Material and Methods 

2.1. Dataset 

The dataset used in this study is based on the work of Goebel [14], and contains 

information from experiments conducted on milling machines under various operational 

conditions. Structured in Matlab, the dataset comprises 16 cases, each representing a 

distinct combination of cutting parameters, such as depth, feed rate, and material type. It 

is important to note that each case has a variable number of tool passes, depending on the 

degree of flank wear (VB), measured in centimeters. Additionally, each pass includes 9000 

samples collected by an acoustic emission sensor of the model WD925, with a sampling 

frequency of 100 kHz. 

2.2. Application of Cosine Similarity in AE Analysis 

For this study, the Cosine Similarity (CS) method will be employed to correlate 

events present in acoustic emission (AE) signals with tool wear during the milling process. 

CS is one of the most widely used metrics for measuring similarity [15]. This technique 
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effectively measures correlations or variations between windows of different signals in 

the time domain, offering the advantage of computational simplicity, which eliminates 

the need for complex mathematical operations. This makes it particularly suitable for real-

time applications. The fundamental concept behind this method is to calculate the cosine 

of the angle between two vectors to assess their similarity [16,17]. Assuming there are two 

different vectors of the same dimension, 𝑋𝑇 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛} and 𝑌𝑇 = {𝑦1, 𝑦2 , 𝑦3, . . . , 𝑦𝑛} 

the cosine similarity between 𝑋𝑇 and 𝑌𝑇  is defined as follows: 

𝐶𝑆(𝑋, 𝑌)  =  
∑𝑁

𝑖=1 𝑥𝑖  ⋅ 𝑦𝑖

√∑𝑁
𝑖=1 𝑥𝑖

2 ⋅ √∑𝑁
𝑖=1 𝑦𝑖

2
  

The value of cosine similarity (CS) ranges from −1 to 1. Specifically, a CS value of −1 

indicates that two vectors point in opposite directions, while a value of 1 indicates that 

they are aligned in the same direction. The closer the CS value is to 1, the more similar the 

vectors are [13,18]. Notably, the CS method emphasizes the directional difference between 

two vectors rather than differences in magnitude. This characteristic makes CS an effective 

alternative for detecting mutation points in AE signals. The application of the CS method 

in this study for analyzing acoustic emission signals in the milling process involves the 

following steps: (i) acquisition of AE signals using a data acquisition system; (ii) pre-

processing the signals to remove noise by applying a low-pass filter with a cutoff 

frequency of 40 kHz, as the acoustic emission signals have a bandwidth of 0 to 40 kHz; 

(iii) dividing the signals from each tool pass into segments of 9000 samples, followed by 

vectorization of the data; and (iv) calculating the cosine similarity between vectors, where 

vectors X and Y represent the acoustic signals under reference conditions (baseline signal, 

related to the intact tool) and after potential damage, such as tool wear. 

3. Results 

Based on the entire study conducted up to the drafting of this document, the results 

obtained for the signals captured under the parameters of one of the cases from the 

previously mentioned dataset will be presented. Cosine similarity was calculated using 

the vector corresponding to the tool without flank wear, in comparison to signals 

exhibiting a progressive wear pattern. The results generated for these samples, applied in 

the CS calculation, are presented in Figure 1. 

. 

Figure 1. Cosine Similarity Calculation for the Samples of the Tool Passes on the Workpiece. 

For comparison purposes, the degree of flank wear (VB) measured for each sample 

is shown in Figure 2. 
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Figure 2. VB Flank Wear. 

By analyzing Figures 1 and 2, it can be observed that as flank wear (VB) increases 

with each tool pass, the corresponding CS calculation decreases, as expected. This occurs 

because the tool progressively wears out, reducing its similarity to the intact tool. 

However, it is important to note that the two curves do not always vary with the same 

intensity at every point. For example, between passes 3 and 4, the flank wear curve shows 

a noticeably steeper incline, indicating more abrupt deterioration compared to the 

previous state. In contrast, the CS curve exhibits a more gradual decline during the same 

interval, reflecting a less drastic change. This suggests that despite greater tool wear in 

this period, the CS calculation did not vary proportionally, as the acoustic signal emitted 

during this short time frame—i.e., between passes—did not fully capture the more acute 

wear of the tool. 

An alternative approach to analyzing the CS method is to compare each signal with 

its immediately preceding sample, rather than with a single reference signal. When 

recalculating the CS using this approach, the results presented in Figure 3 are obtained. 

 

Figure 3. Alternative Approach for Cosine Similarity Calculation. 

As shown in the figure above, the tool wear for each signal is compared with the 

previous signal. With each new pass, the changes in the acoustic signal resulting from the 

contact between the milling tool and the workpiece become less significant compared to 
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the immediately preceding pass. This indicates that, under acoustic analysis, the 

deformations in an initially intact tool are more abrupt and intense than the wear observed 

in an already deteriorated tool. Consequently, the CS curve may eventually trend toward 

a saturation region after many cycles of comparison. 

4. Conclusions 

To apply the cosine similarity (CS) method, the acoustic emission signals were 

preprocessed and trimmed to stable, noise-free regions, ensuring coherent and 

undistorted results. With the processed signals, the CS calculation was performed, 

producing a similarity curve that reflected the wear measured with each pass of the tool 

over the workpiece. As tool deformation increased, the similarity curve decreased, 

indicating that the similarity between the worn tool and its initial, undamaged condition 

progressively diminished with each tool pass. 

Using this same methodology, a second curve was generated by comparing the 

current tool condition with its immediately preceding state. This resulted in an increasing 

curve that tends toward a saturation region after several comparison cycles. This suggests 

that, under acoustic analysis, deformations in an initially intact tool are more abrupt and 

pronounced than the wear observed in a previously deteriorated tool. 

Based on these results, it can be inferred that the cosine similarity method is an 

effective indicator for condition monitoring, as it proportionally tracked tool wear in each 

case. However, it was noted that within the same interval, the CS calculation does not 

vary with the same intensity as the tool wear. This underscores the importance of having 

sufficient data for this methodology to be effective in condition monitoring analyses. A 

sufficiently long sampling period is required for the signal to exhibit significant variations, 

enabling the detection of similarity loss. This ensures a substantial data set and, 

consequently, more conclusive results regarding the tool wear process. 

Author Contributions: Conceptualization, P.d.O.C.J.; methodology, D.D.d.S., and P.M.d.C.M.; 

software, G.A.D., and V.T.D. validation, P.d.O.C.J.; formal analysis, D.D.d.S., and P.M.d.C.M.; 

investigation, D.D.d.S.; resources, P.d.O.C.J.; data curation, D.D.S and P.d.O.C.J.; writing—original 

draft preparation, D.D.d.S., and P.M.d.C.M.; writing—review and editing, P.d.O.C.J.; visualization, 

V.T.D. and G.A.D.; supervision, P.d.O.C.J.; project administration, P.d.O.C.J.; funding acquisition, 

P.d.O.C.J. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the São Paulo Research Foundation (FAPESP), under grants: 

#2023/02413-2 and #2023/11275-2, and by the Pro-Rectory of Research and Innovation of the 

University of São Paulo under grant: #22.1.09345.01.2. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Publicly available dataset was analyzed in this study. This data can 

be found here: [https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-

health/pcoe/pcoe-data-set-repository/]. 3. Milling. (accessed on 27 June 2024). 

Acknowledgments: The authors would like to thank FAPESP for their financial support of this 

project (grant numbers:#2023/11275-2 and #2023/02413-2). 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations: 

The following abbreviations are used in this manuscript: 
AE Acoustic Emission; CS Cosine Similarity; RUL Remaining Useful Life; TCM Tool Condition 

Monitoring. 

References 

1. Thoben, K.D.; Wiesner, S.; Wuest, T. Industrie 4.0 and smart manufacturing-a review of research issues and application 

examples. Int. J. Autom.Technol. 2017, 11, 4–16. 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 6 of 6 
 

 

2. Teti, R.; Mourtzis, D.; D’Addona, D.M.; Caggiano, A. Process monitoring of machining. CIRPAnnals 2022, 71, 529–552. 

3. Iliyas, A.M.; Yusof, Y.; Daud, M.E.; Latiff, K.; Abdul, K.A.Z.; Saif, Y. Machine monitoring system: a decade in review. Int. J. Adv. 

Manuf.Technol. 2020, 108, 3645–3659. 

4. Aliustaoglu, C.; Ertunc, H.M.; Ocak, H. Tool wear condition monitoring using a sensor fusion model based on a fuzzy inference 

system. Mech. Syst. SignalProcess. 2009, 23, 539–546. 

5. Salonitis, K.; Kolios, A. Reliability assessment of cutting tool life based on surrogate approximation methods. Int. J. Adv. 

Manuf.Technol. 2014, 71, 1197–1208. 

6. Karandikar, J.; Mcleay, T.; Turner, S.; Schimitz, T. Tool wear monitoring using naive Bayes classifiers. Int. J. Adv. Manuf.Technol. 

2015, 77, 1613–1626. 

7. Uhlmann, E.; Holznagel, T. Acoustic emission-based process monitoring in the milling of carbon fibre-reinforced plastics. CIRP 

J. Manuf. Sci.Technol. 2022, 37, 464–476. 

8. Ali, J.B.; Morello, C.B.; Saidi, L.; Malinowski, S.; Fnaiech, F. Accurate bearing remaining useful life prediction based on Weibull 

distribution and artificial neural network. Mech. Syst. SignalProcess. 2015, 56, 150–172. 

9. Mohanraj, T.; Yerchuru, J.; Krishnan, H.; Nithin, A.R.S.; Yameni, R. Development of tool condition monitoring system in end 

milling process using wavelet features and Hoelders exponents with machine learning algorithms. Measurement 2021, 173, 

108671. 

10. Shao, H.; Shi, X.; Li, L. Power signal separation in milling process based on wavelet transform and independent component 

analysis. Int. J. Mach. ToolsManuf. 2011, 51, 701–710. 

11. Guo, J.; LI, A.; Zhang, R. Tool condition monitoring in milling process using multifractal detrended fluctuation analysis and 

support vector machine. Int. J. Adv. Manuf.Technol. 2020, 110, 1445–1456. 

12. Zhang, X.; Li, C.; Wang, X.; Wu, H. A novel fault diagnosis procedure based on improved symplectic geometry mode 

decomposition and optimized SVM. Meas. J. Int. Meas. Confed. 2021, 173, 108644. 

13. Liu, W.; Rong, Y.; Zhang, G.; Huang, Y. A novel method for extracting mutation points of acoustic emission signals based on 

cosine similarity. Mech. Syst. SignalProcess. 2023, 184, 109724. 

14. Goebel, K. Management of Uncertainty in Sensor Validation, Sensor Fusion, and Diagnosis of Mechanical Systems Using Soft 

Computing Techniques. Ph.D. Thesis, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, 

CA, USA, 1996. 

15. Cao, S.; Guo, N.; Xu, C. Robust damage localization in plate-type structures by using an enhanced robust principal component 

analysis and data fusion technique. Mech. Syst. SignalProcess. 2022, 162, 108091. 

16. Shishavan, S.A.S.; Kutlu, G.F.; Farrokhizadeh, E.; Donyatalab, Y.; Kahraman, C. Novel similarity measures in spherical fuzzy 

environments and their applications. Eng. Appl. Artif.Intell. 2020, 94, 103837. 

17. Yin, J.; Sun, S. Incomplete multi-view clustering with cosine similarity. Pattern Recognit. 2022, 123, 108371. 

18. Bettahar, T.; Rahmoune, C.; Benazzouz, D.; Merainani, B. New method for gear fault diagnosis using empirical wavelet 

transform, Hilbert transform, and cosine similarity metric. Adv. Mech.Eng. 2020, 12, 168781402092720. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 

to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


