
 
 

 
 

 
Eng. Proc. 2024, 6, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/engproc 

Proceeding Paper 

Ensemble Projected Gated Recurrent Unites for State of Charge 

Estimation: A Case Study on Lithium-Ion Batteries in  

Electric Vehicles 

Noureddine Djemai 1, Ali Arif 1, Abderrazak Guettaf 1 and Tarek Berghout 2,* 

1 Department of Electrical Engineering, Laboratory of Modeling Energy Systems LMSE, University of Biskra, 

07000 Biskra, Algeria; noureddine.djemai@univ-biskra.dz (N.D.); ali.arif@univ-biskra.dz (A.A.);  

abderrazak.guettaf@univ-biskra.dz (A.G.) 
2 Laboratory of Automation and Manufacturing Engineering, Batna2 University, 05000 Batna, Algeria 

* Correspondence: t.berghout@univ-batna2.dz 
† Presented at The 11th International Electronic Conference on Sensors and Applications (ECSA-11), 26–28 

November 2024; Available online: https://sciforum.net/event/ecsa-11. 

Abstract: State of Charge (SoC) estimation is important for improving performance and longevity 

of lithium-ion batteries in electric vehicles (EVs). Traditional methods such as voltage measurements 

and Coulomb counting lie in the inability to account for factors like battery aging and operational 

conditions variations, leading to potential errors in SoC estimation. Accordingly, this work over-

comes these limitations by utilizing Ensemble Projected Gated Recurrent Units (E-PGRUs) for en-

hancing SoC estimation. Traditional methods often struggle with the non-linear dynamics and tran-

sient behaviors of battery systems, leading to suboptimal predictions. The proposed E-PGRU model 

leverages the adaptability of GRU, which efficiently handles time-series data, while employing an 

ensemble strategy to mitigate the risks of overfitting and improve generalization. In our methodol-

ogy, we employed a publically available dataset specifically dedicated to the particular topic of real-

world EV operations involving driving cycles and capturing varying operating conditions. E-PGRU 

architecture consists of multiple GRU networks, with projected layers features, each trained on dif-

ferent subsets of the data, and their outputs are aggregated to produce a more reliable SoC estimate. 

This ensemble technique targets specifically variability in prediction (i.e., standard deviation mini-

mization), increasing prediction confidence and allowing the model to learn complex patterns in the 

battery’s operational behavior. The experiments revealed higher coefficient of determination 

providing an explanation of the variance in dependent variable by independent variables in SoC 

estimation model. The curve fit results also clearly demonstrate improvements in prediction perfor-

mance compared to baseline models of recurrent neural networks in both coefficient of determina-

tion (i.e., due to ensemble learning) and computational time (i.e., due to projection layers) indicating 

a strong alignment with SoC values. Furthermore, E-PGRU showed superior adaptability to differ-

ent usage scenarios and conditions, suggesting its potential for application in battery management 

systems. 
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1. Introduction 

SoC estimation is important in managing lithium-ion batteries for EVs, as accurate 

predictions affect battery performance, safety, and longevity. Traditional methods like 

voltage measurements and Coulomb counting face limitations in accounting for non-lin-

ear battery behavior, aging, and varying operational conditions, leading to inaccuracies 

[1,2]. These issues are exacerbated in real-world EV applications, where factors such as 

rapid load changes and temperature variations significantly impact SoC predictions. This 
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has shifted research in this field toward machine learning, specifically deep learning [3]. 

However, while deep learning models like recurrent neural networks and their variants 

offer some improvement, they often suffer from overfitting and high computational de-

mands. To address these challenges, this research introduces an Ensemble Projected Gated 

Recurrent Unit (E-PGRU) model [4]. By combining ensemble learning with GRU networks 

that use projected layers, the model improves generalization, reduces computational com-

plexity, and offers more accurate SoC predictions. The E-PGRU model successfully bal-

ances accuracy and efficiency, demonstrating superior performance compared to tradi-

tional methods and existing machine learning models. It mitigates overfitting, enhances 

generalization across varying operating conditions, reduces prediction variability, and in-

creases confidence in SoC estimates. The incorporation of projected layers reduces com-

putational complexity, making the model more efficient while maintaining high accuracy. 

The model’s effectiveness is validated using a real-world EV driving cycle dataset, ensur-

ing its practical relevance and adaptability to diverse conditions [5]. Overall, this work 

presents a practical, accurate, and computationally efficient solution for deployment in 

EV battery management systems. 

This paper is organized as follows: Section I provides the introduction. Section 2 fo-

cuses on the materials, describing the datasets used. Section 3 covers the methods, ex-

plaining the GRU and PGRU models in detail. Finally, Section 4 presents the results and 

discussion. 

2. Materials 

This work adopts a lithium-ion battery dataset derived from tests conducted at the 

University of Wisconsin-Madison [5]. The dataset focuses on the performance evaluation 

of the Panasonic 18650PF cell. These tests were conducted in an 8 cubic feet thermal cham-

ber using a 25 ampere, 18-volt Digatron Firing Circuits Universal Battery Tester. The ex-

periments involved multivariate conditions, including different ambient temperatures 

across multiple experimental scenarios, to assess the battery’s characteristics. The dataset 

includes detailed records from several types of tests: pulse discharge tests, electrochemical 

impedance spectroscopy (EIS) tests, and drive cycles under varying temperature condi-

tions. Among many tests conducted at different temperatures, including −20 °C, −10 °C, 0 

°C, and 10 °C, this work utilized the test related to 0 °C as an initial step in our experi-

ments. This means that two subsets are used. The first subset provides detailed results 

from the five-pulse discharge Hybrid Pulse Power Characterization (HPPC) test per-

formed at an ambient temperature of 0 °C. The Hybrid Pulse Power Characterization test 

involves applying a series of high-rate discharge pulses to the battery at varying currents 

(0.5, 1, 2, 4, and 6 times the capacity of the battery, also known as C) to evaluate its perfor-

mance under different SoCs. This file captures critical data, including the voltage and cur-

rent responses of the battery during these pulses. The second subset focuses on the dis-

charges occurring between the pulses of the HPPC test. This file includes data on the bat-

tery’s performance during the intervals between high-rate discharge pulses. The first sub-

set is vital for assessing the battery’s behavior under high-power conditions and at low 

temperatures, offering insights into its dynamic performance and efficiency. Meanwhile, 

the second subset helps analyze the battery’s performance during periods of lower dis-

charge rates and its ability to handle successive high-power demands. Together, these da-

tasets are essential for understanding the battery’s response to rapid discharge conditions 

and its recovery behavior, particularly at low temperatures. Table 1 summarizes the sub-

sets used in our analysis, detailing their specific test conditions, key data components, and 

overall purpose. 
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Table 1. Summary of datasets used in the analysis of Panasonic 18650PF cell performance. The table 

outlines the file names, descriptions, test conditions, key data components, and the purpose of each 

dataset. 

Data Label 

(This Work) 
File Name Description 

Test 

Conditions 
Key Data Purpose 

Data 1 

05-20-17_10.44 

0degC_5pulse_HPPC_Pan1865

0PF.mat 

Contains results 

from the five-pulse 

discharge HPPC 

test. 

Ambient 

temperature: 0 

°C 

High-rate discharge 

pulses at 0.5, 1, 2, 4, 6C; 

includes voltage and 

current responses at 

various states of charge 

(SOC). 

Assess battery 

performance under high-

power conditions and 

low temperatures. 

Data 2 
05-20-17_12.07 

3619_dis5_10p.mat 

Includes data on 

the discharges 

between the pulses 

of the HPPC test. 

Ambient 

temperature: 0 

°C 

Discharge performance 

data during intervals 

between HPPC pulses; 

provides information on 

recovery and capacity. 

Evaluate how the battery 

recovers from high-

power pulses and its 

efficiency during lower 

discharge rates. 

3. Methods 

In this work, PGRU is incorporated into ensemble learning to enhance model perfor-

mance [4]. The PGRU extends the traditional GRU by introducing projected layers, which 

improve computational efficiency and accuracy. GRU is described by Equations (1)–(4), 

where 𝛼denotes the sigmoid function, and 𝑊 and 𝑏 represent weight matrices and bi-

ases, respectively. 𝑧𝑡, 𝑟𝑡, ℎ̃𝑡,  ℎ𝑡, are update gate, reset gate, candidate activation, and hid-

den state, accordingly. The PGRU introduces projected layers to modify these equations. 

Specifically, the PGRU incorporates a projection step to reduce the dimensionality of the 

hidden state, improving both the efficiency and generalization of the model. This modifi-

cation is achieved by adding a projection matrix 𝑃 to the update and reset gate calcula-

tions as in (5)–(7). By projecting the hidden states into a lower-dimensional space before 

applying the activation functions, the PGRU enhances the model’s efficiency while main-

taining high accuracy. This adaptation allows for faster training and better performance, 

particularly when integrated into ensemble learning frameworks. 

𝑧𝑡  =  𝜎(𝑊𝑧 [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑧) (1) 

𝑟_𝑡 =  𝜎(𝑊𝑟  [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑟) (2) 

ℎ̃𝑡 =  𝑡𝑎𝑛ℎ(𝑊ℎ [𝑟𝑡  ℎ𝑡−1, 𝑥_𝑡]  + 𝑏ℎ)  (3) 

ℎ𝑡  =  (1 − 𝑧𝑡) ℎ𝑡−1  +  𝑧𝑡  ℎ̃𝑡) (4) 

𝑧𝑡 =  𝜎(𝑃 (𝑊𝑧 [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑧)) (5) 

𝑟𝑡  =  𝜎(𝑃 (𝑊𝑟 [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑟) (6) 

ℎ̃𝑡  =  𝑡𝑎𝑛ℎ(𝑃 (𝑊ℎ [𝑟𝑡ℎ𝑡−1, 𝑥𝑡]  +  𝑏ℎ) (7) 

4. Results 

The results presented in Figure 1 highlight the predictive performance of the E-PGRU 

and PGRU models for SoC prediction, using the coefficient of determination. For Data 1, 

the coefficient of determination indicates that the E-PGRU model performs better than the 

PGRU model, with values of 0.9943 and 0.9940 for training and testing, respectively, com-

pared to 0.9829 and 0.9817 for PGRU. This suggests that E-PGRU accounts for a greater 

proportion of the variability in SoC and demonstrates slightly better generalization to new 

data. In Data-2, both models exhibit high coefficients of determination, with E-PGRU 
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achieving 0.9961 and 0.9941 for training and testing, respectively, while PGRU records 

0.9958 and 0.9919. These results indicate that both models are robust, with E-PGRU con-

sistently showing superior predictive accuracy. Overall, the data underscore the effective-

ness of the E-PGRU model in capturing and predicting SoC, as evidenced by its higher 

coefficient of determination compared to the PGRU model. 

 

Figure 1. Curve fit and coefficient of determination results. 

5. Conclusions 

In this study, we compared the performance of two predictive models, E-PGRU and 

PGRU, for estimating the SoC of lithium-ion batteries using two different datasets. The 

results demonstrated that the E-PGRU model consistently outperformed the PGRU 

model, showing superior accuracy in predicting SoC. The E-PGRU model’s enhanced per-

formance across the datasets highlighted its potential for more effective battery manage-

ment. Given its robust predictive accuracy, the E-PGRU model proved particularly well-

suited for applications in EVs, where precise SoC estimation is crucial for optimizing bat-

tery performance and extending vehicle range. Consequently, we recommended adopting 

the E-PGRU model for EV battery management systems to improve reliability and effi-

ciency in real-world applications. 
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