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Abstract: Precision agriculture (PA), leveraging wireless sensor networks (WSN) for efficient data 

collection, is set to revolutionize intelligent farming. However, challenges such as energy efficiency, 

data collection time, data quality, redundant data transmission, latency, and limited WSN lifespan 

persist. We propose a novel edge computing-driven WSN framework (ECDWF) for PA, designed 

to enhance network longevity by optimizing data transmission to the base station (BS) and enhanc-

ing energy dissipation by abolishing data redundancy through aggregation. This framework in-

volves a two-step data aggregation process: within clusters, where the cluster head (CH) aggregates 

data, and at a central network point, where an edge computing-enabled gateway node (GN) per-

forms further aggregation. Our MATLAB simulation evaluates the proposed ECDWF against the 

Low-energy adaptive clustering hierarchy (LEACH) protocol and two classic sensing strategies, Ef-

fective Node Sensing (ENS) and Periodically Sensing with All Nodes (PSAN). Results reveal signif-

icant energy efficiency, quality of data (QoD) transmission, and network lifespan improvements. 

Due to reduced long-range transmissions, nodes in our scheme dissipate energy over 2500 rounds, 

compared to 1000 rounds in LEACH. Our method sends Data packets to the CH and Base Station 

(BS) for 2500 rounds at 3.6 × 1010 bits, while LEACH stops at 1000 rounds at 2 × 1010 bits data trans-

mission rate. Our approach improves network stability and lifetime, with the first node dying at 

2070 rounds versus 999 rounds in LEACH and the last node remaining functional until 2476 rounds 

compared to 1000 rounds in LEACH. Our proposed system, ECDWF, outperforms PSAN and ENS 

in latency, data collection time (DCT), and energy usage. At 50 Mbps, the communication latency 

of ECDWF is just 8 s, compared to 24 s for ENS and 45 s for PSAN. ECDWF maintains a QoD of 

100% across various valid sensor and node counts, surpassing ENS and PSAN. Our contribution 

integrates edge computing with WSN for PA, enhancing energy utilization and data aggregation. 

This approach effectively tackles data redundancy, transmission efficiency, and network longevity, 

providing a robust solution for precision agriculture. 

Keywords: precision agriculture; wireless sensor networks; edge computing; energy efficiency; la-

tency; data aggregation; network longevity; MATLAB 

 

1. Introduction 

Precision agriculture (PA) has garnered significant interest in both academic and in-

dustrial spheres, being regarded as a promising approach to enhancing food production 

[1]. Since data serves as the cornerstone of agricultural artificial intelligence, the process 

Citation: Hoque, M.J.; Islam, M.S.; 

Ahmed, I.; Nurullah, M. Enhancing 

Precision Agriculture Efficiency 

Through Edge Computing-Enabled 

Wireless Sensor Networks: A Data 

Aggregation Perspective. Eng. Proc. 

2024, 6, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor(s): Name 

Published: 26 November 2024 

 

Copyright: © 2024 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 2 of 13 
 

 

of data collection and recording represents the initial phase in PA-related scientific re-

search and applications [2]. Typically, data acquisition occurs within the network device 

domain, often referred to as the sensing layer. Among the enabling technologies, agricul-

tural WSNs play a pivotal role, frequently assuming responsibility for data collection [3,4]. 

WSNs utilize sensor nodes to monitor environmental factors, such as temperature, 

air quality, water conditions, soil composition etc. Such ad-hoc networks are characterized 

by an evolving topology that regularly alters due to the addition or removal of nodes [5,6]. 

WSNs are generally tailored for particular applications and are hampered by restricted 

memory and power resources. Energy efficiency is a critical concern in WSNs, as replacing 

failed nodes, particularly in harsh environments, presents a significant challenge [7]. Alt-

hough wireless sensor networks provide significant benefits in numerous applications, 

they also encounter specific limits. A number of studies have examined issues related to 

network architecture, efficiency, and the level of services, which are often exacerbated by 

the restricted power supply in WSNs [8–10]. Therefore, optimizing energy consumption 

is essential for extending the network’s operational lifetime. The primary energy-consum-

ing tasks in WSNs include data collection, interpretation, and transportation [11]. 

In WSNs, transportation of data is one of the most energy-intensive processes, ac-

counting for approximately 70% of total energy consumption [12]. Reducing transmission 

frequency and employing data aggregation techniques are effective strategies to conserve 

energy [13]. In a WSN, sensor nodes are typically organized into clusters, with nodes clas-

sified as either CH nodes or member nodes. The CH node aggregates data before trans-

mitting it to the sink rather than relying on direct node-to-node communication. The basic 

structure of WSNs clustering involves three essential components: (1) sensor nodes (SN), 

(2) GN, and (3) base station (BS). SNs are linked to the corresponding CH, the central data 

transmission hub. Instead of delivering data directly to the BS via address-centric routing, 

SNs collect and relay data to the CH, thereby reducing data redundancy. The CH then 

aggregates data from its cluster’s member nodes and sends it to the BS [14,15]. Although 

this clustering technique minimizes redundancy, energy consumption within each cluster 

gradually diminishes the network’s lifespan. 

Recent studies have suggested various strategies for addressing hardware require-

ments, task scheduling, and optimization for handling multiple sensor data tasks [16,17]. 

At the sensor level, data-gathering methods are divided into two key categories: PSAN 

and ENS. The PSAN method involves equipping network nodes with numerous sensors 

and regularly collecting data from all nodes to manage multiple jobs. In contrast, the ENS 

method involves selecting nodes relevant to a specific task before collecting data [18]. 

Compared to traditional WSNs, modern WSNs face several challenges in handling multi-

ple data collection tasks. First, WSNs are controlled by inadequate computational power, 

bandwidth, energy and storage capacities, creating a significant tension between these 

limitations and the demands of multiple tasks, particularly in ensuring the acquisition of 

valid sensor data. Second, the increasing complexity of applications has heightened the 

need for efficient task management, especially in data acquisition, requiring that multiple 

tasks be completed within a single system. Relying on traditional data collection methods 

in WSNs increases time and energy consumption as more data, including invalid data, is 

sensed and transmitted, negatively affecting the system’s QoD and latency [19,20]. There-

fore, QoD and latency have emerged as critical metrics for managing multiple data collec-

tion tasks in WSNs used in intelligent agriculture. 

Numerous studies have been conducted on WSNs; however, few have explored in-

tegrating factors such as data collection time (DCT), QoD, energy efficiency, latency, and 

network lifetime [21,22]. Current data acquisition frameworks and strategies often over-

look these critical metrics, causing agricultural WSNs or IoT systems to invest significant 

time in fusing or analyzing raw data [23]. To address these challenges and enhance QoD 

while meeting the latency requirements for data collection, we developed an edge com-

puting-enabled WSN for intelligent agriculture. Our strategy aims to extend the network’s 

lifetime by employing data aggregation techniques that reduce the number of 
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transmissions and consolidate them into a single transmission from GN to the BS. Two 

key aggregation points are introduced: the CHs within each cluster and the GN, which 

leverages edge computing. This dual-level aggregation enables a single transmission of 

aggregated data with the required QoD, optimizing power consumption and promoting 

more efficient resource utilization throughout the network. 

The key contributions of this work are as follows: 

1. We developed a framework for edge computing-enabled WSNs considering QoD 

and DCT constraints. 

2. We proposed an edge computing-enabled technique for collecting valid data based 

on parameters such as node position and data type, ensuring high QoD with real-

time execution. 

3. We introduced a dual-level data aggregation approach, utilizing CHs and GNs to 

minimize data redundancy and reduce transmission frequency. This approach opti-

mizes energy efficiency and extends network lifetime by consolidating data into a 

single long-range transmission from the GN to BS. 

The structure of this paper is organized as follows: Section 2 details the proposed 

algorithm, which introduces a two-tier data aggregation method designed to reduce en-

ergy consumption and extend network lifespan. Section 3 provides an evaluation of the 

proposed approach, with the results and discussion presented in Section 4. The paper con-

cludes with a summary of key findings and insights in the final section. 

2. Proposed Edge Computing Enabled WSN Framework 

The proposed WSN framework consists of three layers: the WSN layer, the edge com-

puting layer, and the application layer, as illustrated in Figure 1. 

Figure 1. Proposed Edge computing enabled WSN framework. 

The framework’s operational process is as follows: First, various data-gathering du-

ties are allocated to either edge servers or WSN nodes according to the users’ require-

ments. Next, the initial data aggregation occurs at the selected CHs. Following this, edge 

computing performs a second round of data aggregation at the GNs. Finally, the data is 

transmitted from BS to the cloud computing server. An overview of this procedure is pre-

sented in Algorithm 1. 
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Algorithm 1: Edge Computing-Enabled Data Aggregation 

Input: Number of Sensors: S, Sensor Indices: sensors, Nodes: Nodes, Node Indices: V, 

Sensor Weights: w (for each task), Incidence Matrix: Incidence Matrix (for each aggrega-

tion), Energy: E, PCH 

Output: Dead Nodes, CHs, Clusters, Amount of Data Transmission 

Procedure: 

1. Initialization of Nodes, GN, and Base Station (BS) Placement: 

(a) Initialize all sensor nodes S. 

(b) Determine the locations of the GN and the BS. 

2. CH Selection Based on Probability: 

(a) Select CH nodes based on the probability PCH 

3. Formation of Clusters and Data Aggregation Assignment: 

(a) Assign sensor nodes to the selected CHs to form clusters. 

(b) CH nodes are responsible for aggregating the data received from the Sensor Nodes 

(SNs) within their respective clusters. 

4. Sensing and Data Transmission to CH: 

(a) All sensor nodes sense the designated phenomenon. 

(b) Transmit the sensed data to the corresponding CHs. 

5. Data Aggregation at CH: 

(a) CHs consolidate the data obtained from the sensor nodes within their cluster. 

6. Data Transmission to GN: 

(a) CHs relay the consolidated data to the GN node upon concluding the data aggrega-

tion procedure. 

7. Data Aggregation at GN (Edge Server): 

(a) Upon receiving data from all CHs, the Edge Server at GN performs additional data 

aggregation to reduce redundancy and minimise data transmission. 

(b) Calculate the Node Correlation Degree (NCD) for each node’s aggregation. 

(c) Discard irrelevant or less relevant sensor data. 

(d) Recalculate the NCD to assess the quality of the collected data using the node’s data 

weight and the incidence matrix. 

(e) Activate necessary nodes and put other nodes into sleep mode after completing data 

aggregation. 

8. Data Transmission to BS: 

(a) The data, processed at the GN node by the edge server, is transmitted to the BS. 

2.1. Working Procedure of Proposed Framework 

The proposed protocol operates in two key phases: (1) Cluster Formation and CH 

Selection and (2) Data Aggregation and Transmission. 

2.1.1. Cluster Formation and CH Selection 

At this stage, CHs are designated, and clusters are established. The protocol functions 

in rounds, with each round denoting a time unit. In the initial round, CHs are chosen at 

random. In the following iterations, CH selection is determined by comparing the energy 

levels of nodes to a computed threshold value. Equation (1) is used to establish the thresh-

old (Th. Once selected, the CHs broadcast their status to the other nodes within the cluster 

via notification messages, inviting nodes to join their cluster. The CHs then await re-

sponses from the nodes expressing their intent to join. Nodes exhibiting higher Received 

Signal Strength accept join requests, and the CH establishes associations with these nodes 

for the duration of the round. Upon the conclusion of this phase, the clusters are consti-

tuted, and Cluster Heads (CHs) are appointed. 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 5 of 13 
 

 

𝑇ℎ ≤  
𝑝

1 − 𝑝 × 𝑟𝑚𝑜𝑑 (
1
𝑝

)
 

(1) 

2.1.2. Data Aggregation and Transmission 

In this phase, SNs transmit the detected data to the CH using TDMA technique. Im-

plementing this technique is essential to prevent data collisions that could occur if all 

nodes within the cluster are sent simultaneously. Once CHs are selected in the initial 

phase, they assign TDMA schedules for sending data within clusters. Upon receiving data 

from the nodes, the CH aggregates and forwards the information to the GN. At the GN, 

further data aggregation is performed using edge computing to eliminate duplicate data 

potentially received from neighboring CHs. This dual-level aggregation strategy reduces 

redundant data transmission to the BS, significantly improving the network’s energy effi-

ciency and overall performance. 

3. Performance Evaluation 

3.1. Simulation Parameters 

For the simulation of the proposed scheme, a square area measuring 100 m × 100 m 

is considered, within which 100 nodes are installed arbitrarily. The GN is positioned at 

the centre of the area (50 m × 50 m), while the BS is just outside (120 m × 120 m). The 

simulation assumes ideal conditions, including minimal channel interference with no loss 

of data and no constraints on bandwidth. The specific parameters used in the simulation 

are detailed in Table 1. 

Table 1. Simulation parameters for the proposed WSN framework. 

Parameters Value 

Number of sensor nodes (n) 100 

The energy of node Eo 0.5 J 

CH selection probability (p) 0.1 

Transmitter’s energy ETx 50 × 10−10 J 

Receiver’s energy ERx 50 × 10−10 J 

Energy (free space) Efs 10 × 10−11 J 

Energy (Multipath fading) Emp 0.0013 × 10−12 J 

Energy (Data aggregation) EDA 5 × 10−9 J 

Maximum rounds Rmax 5000 

Distance Threshold (free space) d0 87 m 

Data Rate 250 Kbps 

Minimum Residual Energy (Eth) 10 J 

Frequency 25 kHz 

Sensing Range of Each Meter (sensing range) 20 m 

Latency Rates 0–50 Mbps 

Simulation Time (t) 10 s 

3.2. Radio Energy Dissipation Model 

The model for radio energy dissipation encompasses essential elements, including 

the transmitter, amplifier, and receiver. The proposed model quantifies the energy neces-

sary to send a “M” bit message across a distance of “d” by employing a radio energy 

dissipation model from [24], as outlined in Equation (2). The amount of power expended 

to operate the transceiver circuitry is denoted as 𝐸𝑒𝑙𝑒𝑐, whereas free space (𝐸𝑓𝑠) and multi-

path fading ( 𝐸𝑚𝑝) serve as parameters that characterize energy dissipation per bit, 
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contingent upon the transmission distance. The threshold distance, 𝑑0, is computed in 

Equation (3), which establishes the suitable energy model in relation to distance. 

The simulation incorporates two distinct propagation channels: (1) 𝐸𝑓𝑠 and (2) 𝐸𝑚𝑝. 

The channel selection is contingent upon the spatial separation between the sender and 

the receiver. For distances less than the threshold 𝑑0, the 𝐸𝑓𝑠 model is utilized, whereas 

the 𝐸𝑚𝑝 model is employed for distances that surpass the threshold. Equation (4) speci-

fies the amount of power necessary for the receiver, 𝐸𝑅𝑥, to process a message consisting 

of “M” bits. 

𝑑 =  {
𝐸𝑇𝑥(𝑀, 𝑑)𝑀 × 𝐸𝑒𝑙𝑒𝑐 + 𝑀 × 𝐸𝑓𝑠 × 𝑑2 when (𝑑 < 𝑑0)

𝑀 × 𝐸𝑒𝑙𝑒𝑐 + 𝑀 × 𝐸𝑚𝑝 × 𝑑4                 when (𝑑 ≥ 𝑑0)
 (2) 

𝑑0 =  √
𝐸𝑓𝑠

𝐸𝑚𝑝

 (3) 

𝐸𝑅𝑥(𝑀) = 𝑀 × 𝐸𝑒𝑙𝑒𝑐 (4) 

4. Results and Discussion 

In our proposed system, nodes are randomly distributed in a 100 × 100 farming area, 

with some nodes marked as dead due to insufficient energy (energy below a threshold). 

Figure 2 shows connections between non-aggregating nodes and their respective cluster 

heads with dashed lines and between cluster heads and the gateway with solid lines. This 

simulates the data forwarding process in the network. Nodes with sufficient energy are 

considered alive, and among them, some are selected as candidate aggregator nodes 

based on a threshold probability. One aggregator node is chosen from each sub-farming 

region to aggregate data from non-aggregating nodes within that region. Following the 

aggregation of data at the CHs, the compiled information is transmitted to the GNs. Figure 

3 displays the aggregated data (in Kbps) received by the gateway from the cluster heads. 

The data received at the gateway highlights the amount of information that the gateway 

will process and store. 

 

Figure 2. Proposed WSN with alive and dead nodes. 
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Figure 3. Aggregated data at each CH. 

4.1. Comparison with LEACH 

We compared the performance of our proposed system with the LEACH protocol, 

focusing on energy dissipation, data transmission to the BS, QoD, and network stability. 

Figure 4 illustrates how the energy lost by nodes in the LEACH and Proposed protocols 

is distributed. Nodes expend energy after roughly 1000 rounds in LEACH, which happens 

after about 2500 rounds in our proposed ECDWF. The proposed system’s reduced energy 

dissipation is attributed to fewer long-range transmissions, with data aggregation at both 

the CHs and GNs minimizing redundant data transmissions. 

Figure 5 shows the number of data packets sent to the BS. In the proposed scheme, 

more packets are sent than in LEACH. Instead of directly transmitting data to the BS, as 

in LEACH, our protocol aggregates data first at the CHs and then at the GNs before send-

ing it to the BS. LEACH sends data until about 1000 rounds, with a data rate of up to 2 × 

10¹⁰, while the proposed scheme transmits data until 2500 rounds at a rate of 3.5 × 10¹⁰. 

The proposed protocol enhances energy efficiency by using the GNs for edge computing 

and data aggregation, achieving a higher data rate and longer transmission period to the 

BS than LEACH. Figure 6 further demonstrates that our framework improves QoD, ena-

bling an additional 1500 rounds of data transmission at a higher rate. 
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Figure 4. Energy dissipation by nodes. 

 

Figure 5. Data transmission to BS. 

Figure 7 compares network lifetime and stability. The very first node passes away 

after 999 rounds in LEACH, and by the time 1000 rounds have passed, all of the nodes 

have passed away. In contrast, the first node in our scheme dies after 2070 rounds and the 

last node by 2500 rounds, indicating superior network stability and lifetime. Simulation 

results show that our protocol outperforms LEACH regarding data transmission, energy 

dissipation, QoD, stability, and overall network lifespan. Minimum long-distance trans-

missions to the BS are more efficient for homogeneous networks. Data aggregation at two 

distinct stages minimizes transmissions and optimizes energy usage by merging several 

transmissions into a single lengthy GN-BS transmission. 
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Figure 6. QoD of both systems. 

 

Figure 7. Network stability and lifetime. 
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4.2. Comparison with Sensing Algorithms 

We also compared our proposed system with the prominent sensing algorithms 

PSAN and ENS in terms of DCT, latency, and energy consumption. DCT and latency were 

used to assess the performance of the proposed WSN framework. 

Figure 8 depicts communication lag at various data speeds. As illustrated, latency 

lowers across every technique as the data rate increases since greater data rates reduce 

transmission time. With varying numbers of covering nodes, Figure 9 displays the DCT 

findings. Although DCT increases with the number of nodes in all algorithms, the pro-

posed algorithm consistently achieves lower DCT than PSAN and ENS. The proposed 

algorithm minimizes communication latency and DCT by collecting and transmitting only 

valid data, effectively reducing the amount of invalid data in the network. PSAN shows 

the highest communication latency and DCT, as it collects data from all nodes and sensors. 

ENS performs better than PSAN since it selects specific sensor nodes rather than involving 

the entire network. At a 50 Mbps data rate, the proposed algorithm achieves a communi-

cation latency of just 8 s, compared to 24 s for ENS and 45 s for PSAN. 

Figure 10 compares energy consumption across different numbers of valid sensors. 

Energy consumption increases with the rise of the valid sensor numbers. However, the 

proposed framework consumes significantly less energy than PSAN and ENS. This is be-

cause the proposed algorithm selects sensors and nodes based on their validity, optimiz-

ing energy usage. In contrast, PSAN reaches the highest and most consistent energy con-

sumption level since it does not account for valid sensors, leading to inferior energy effi-

ciency compared to the proposed algorithm. 

 

Figure 8. Communication latency at various data rates. 
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Figure 9. DCT at valid sensor numbers. 

 

Figure 10. Energy consumption comparison. 

5. Conclusions 

This research presents a novel framework to improve energy efficiency in wireless 

sensor networks by employing data aggregation techniques. By consolidating redundant 

data at the aggregator nodes, the number of transmissions is reduced, leading to lower 

energy consumption across the network. The proposed system introduces a gateway node 

that performs secondary data aggregation using edge computing after receiving data from 

cluster heads. This optimized data is then sent to the sink through a single, long-range 

transmission, further minimizing energy use. The proposed WSN framework markedly 
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prolongs the network’s lifespan by optimizing energy conservation. We evaluated the ef-

ficacy of our suggested method against a renowned clustering technique and two sensing 

algorithms. Our solution outperforms the LEACH protocol in energy dissipation, stabil-

ity, data transfer to the base station, and network longevity, as evidenced by the compar-

ative analysis. Furthermore, our framework surpasses the commonly utilized sensing al-

gorithms, ENS and PSAN, in terms of communication latency, DCT, and energy usage. It 

is important to emphasize that this study concentrates on homogenous networks. Future 

study will seek to expand the dual data aggregation approach to heterogeneous networks 

and investigate additional performance indicators, including overhead, bandwidth con-

sumption, and packet loss. 
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