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Abstract: Vision and touch are fundamental sensory modalities that enable humans to perceive and 

interact with objects in their environment. Vision facilitates the perception of attributes such as 

shape, color, and texture from a distance, while touch provides detailed information at the contact 

level, including fine textures and material properties. Despite their distinct roles, the processing of 

visual and tactile information shares underlying similarities, presenting a unique opportunity to 

enhance artificial systems that integrate these modalities. However, existing methods for combining 

vision and touch often rely on data fusion at the decision level, requiring extensive labeled data and 

facing challenges in generalizing to novel situations. In this paper, we leverage contrastive learning 

to train a convolutional neural network on textile data using both visual and tactile inputs. Our 

objective is to develop a network capable of extracting unified representations from both modalities 

without the need for extensive labeled datasets. We explore using a contrastive loss functions to 

optimize the learning process. Our results demonstrate that the shared representations effectively 

capture critical data structures and features from both sensory modalities, enabling successful dif-

ferentiation between object classes based on both vision and touch. We validate our approach 

through a series of experiments, optimizing hyperparameters to maximize performance. The find-

ings suggest that extracting shared representations for vision and touch not only enhances the inte-

gration of visual and tactile information but also provides a robust framework for multimodal per-

ception in artificial systems. 
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1. Introduction 

Vision and touch are two complementary sensing modalities that must synergisti-

cally collaborate to enable safe and effective object manipulation in robots. Efficient inte-

gration of these modalities is therefore a crucial step toward achieving full autonomy in 

robotic systems. 

Inspired by how these senses complement each other in humans, researchers are 

working to enable robots with similar capabilities. However, training robots to under-

stand touch, or haptic perception, presents challenges. Collecting large amounts of tactile 

data is time-consuming and resource-intensive, whereas visual data is far easier to gather 

at scale. This discrepancy motivates the need for innovative solutions that leverage visual 

data to enhance tactile understanding. 

In this study, we focus on improving touch-based object recognition, specifically for 

fabric materials, by utilizing the strengths of visual data. Instead of relying solely on vast 

tactile datasets, we propose a contrastive learning framework that transfers knowledge 

from visual learning to touch-based recognition. By identifying shared representations 
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between these two modalities, such a method enables robots to understand tactile prop-

erties with minimal tactile data. 

This approach can enhance robotic functions, such as identifying fabric textures, de-

tecting surface irregularities, and recognizing material types based on visual input alone, 

significantly reducing the need for exhaustive tactile training. By finding common ground 

between vision and touch, we aim to create a more efficient and scalable solution for hap-

tic perception in robotics. In the following sections, we present our framework and results, 

demonstrating how contrastive learning can effectively unify visual and tactile percep-

tion. 

2. Literature Review 

Object recognition through haptic perception is a growing area in robotics, despite 

challenges in collecting tactile data. Zhang et al. [1] improved object recognition using 

tactile data by optimizing a Support Vector Machine (SVM) with a Differential Evolution 

algorithm, enhancing accuracy and generalization. Other studies, like those by Jamali and 

Sammut [2] and Sugaiwa et al. [3], focused on material classification and grasp optimiza-

tion. Jamali and Sammut classified materials by surface texture sensing, while Sugaiwa et 

al. developed a method for adjusting grasp force based on object properties. 

Combining vision and touch for object recognition has been an interesting research 

topic. Early work by Allen [4] demonstrated the effectiveness of integrating visual and 

tactile feedback, where vision aids in object localization, and touch refines texture and 

shape understanding. Stansfield [5] expanded on this by developing a robotic system that 

uses passive vision for object detection and active touch for detailed analysis. More recent 

works such as the research by Yang and Lepora [6] introduce deep learning frameworks 

that allows robots to use both visual and tactile data for object recognition, particularly 

for irregular shapes. Rouhafzay and Cretu [7,8] further demonstrated the effectiveness of 

combining visual information as a guide to slectively collect tactile data for 3D object 

recognition. 

Other works focus on enhancing the training of tactile object recognizers by leverag-

ing visual information. Li et al. [9] employed generative models for cross-modal predic-

tion, enabling robots to predict tactile inputs from visual data, enhancing perceptual ac-

curacy. Rouhafzay et al. [10] proposed a hybrid deep learning model capable of handling 

both visual and tactile tasks by transfer learning from vision to touch. Yang et al. [11] and 

Lee et al. [12] further explored frameworks that integrate vision and touch, improving 

robot performance in contact-rich environments. Recently, Dave et al. [13] used a self-

supervised contrastive approach to combine visual and tactile data, enhancing multi-

modal representation learning. 

3. Framework 

Figure 1 illustrates the overall framework of the proposed approach. We leverage a 

ResNet-50 architecture [14], pretrained on ImageNet [15], as the backbone and modify it 

to extract a shared representation from visual and tactile data. After feature extraction 

using ResNet-50 for both input modalities (visual and tactile), a custom projection head is 

added to transform these features into a more compact representation (128 dimensions) 

through dense layers. This approach is well-suited for contrastive learning scenarios, 

where the goal is to compare and learn representations from both tactile and visual inputs. 
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Figure 1. Overall framework to extract shared representation. 

The contrastive loss function is used to bring the representations of similar samples 

from both modalities closer together, while pushing apart those of dissimilar samples. To 

compute the loss between the compact representations of the two modalities, we firstly 

normalize the projections for each modality as descrived by Equation (1). 

𝑧𝑖 =
𝑝𝑖

‖𝑝𝑖‖2
,   𝑧𝑗 =

𝑝𝑗

‖𝑝𝑗‖
2

   (1) 

where 𝑝𝑖  and 𝑝𝑗  are the projections from the two modalities (visual and tactile), and  

‖𝑝𝑖‖2 and ‖𝑝𝑗‖
2

 are the 𝐿2 norm of these latent space vectors. Subsequently the cosine 

similarity is calculates as: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖,𝑗 =
𝑧𝑖 ∙ 𝑧𝑗

𝜏
     (2) 

where 𝜏 is the temperature hyperparameter controling the model’s sensitivity to differ-

ences between the pairs of projections. The lower the temperature, the more strongly the 

model penalizes the differences. 

The labels are then created to represent positive pairs, that is, those where both inputs 

(projections1 and projections2) come from the same type of fabric, one from vision and 

the other from touch. 

𝐿𝑎𝑏𝑒𝑙𝑠𝑖,𝑗 = {
1, 𝑖𝑓 𝑖 = 𝑗 
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3) 

To train the network we use cross-entropy loss to maximize the cosine similarity be-

tween the representations of data from vision and touch. As such, the network learns to 

extract a common representation between the two modalities. 

4. Data and Experiemnt Setup 

For our experiments, we used the ViTac [16] dataset and selected 11 fabric classes to 

simplify the training process. The visual data was captured using a Canon EOS Rebel T2i 

camera, which features an 18-megapixel APS-C CMOS sensor, providing high-resolution 

images (5184 × 3456 pixels) that highlight the texture details of the fabrics. The camera’s 

9-point autofocus system ensured sharp focus on the objects, while its DIGIC 4 processor 

facilitated fast image processing. The tactile data was collected using a GelSight [17] sen-

sor, which provides detailed 3D images of fabric surfaces through contact with a soft elas-

tomer membrane. This membrane, deformed by the object’s texture, is illuminated by 

RGB LEDs, and the sensor captures high-resolution tactile information on shape, texture, 

and contact forces, enabling a rich perception of the fabrics. This setup allowed us to train 

a model with comprehensive visual and tactile data. 
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5. Results and Discussion 

Temperature is a crucial hyperparameter in contrastive learning, particularly in reg-

ulating the sensitivity of the loss function to dissimilar objects. It directly influences how 

the model penalizes difficult negative samples—those fabric pairs that are challenging for 

the model to differentiate. A higher temperature reduces the sensitivity to these difficult 

negatives, resulting in less penalty for mistakes, while a lower temperature intensifies the 

penalty. Both extremes can negatively affect the model’s performance, underscoring the 

importance of finding an optimal temperature. To determine the optimal temperature for 

our model, we conducted experiments by carefully adjusting the temperature value and 

analyzing the resulting performance. 

Our results, visualized in Figure 2, indicate that a temperature of 0.08 produces the 

lowest average loss, making it the optimal value for our framework. 

 

Temperature 

Figure 2. Comparison of the performance of models trained with different temperature values. 

After determining the optimal temperature, we visualized the data using t-SNE [18] 

to better understand how well the model could differentiate between fabric types across 

both visual and tactile data. This plot allows us to represent data, which are modeled in 

multiple dimensions, in a two- or three-dimensional graph while preserving the structure 

of the data. The axes of this graph do not represent specific characteristics of the data but 

rather correspond to artificial dimensions we refer to as ‘components’. Here we leverage 

a two-dimensional representation for both tactile and visual data. In the Figure 3, the num-

bers in the legend represent the tissue labels (with 11 representing tissue ‘11’), so each 

color corresponds to a specific tissue. The goal of this project is to recognize objects, which 

is reflected in the formation of clusters of identical colors, separated from one another. 

As previously mentioned, in contrastive learning, the temperature parameter plays 

a crucial role in adjusting the similarity scores used to compute the loss, effectively con-

trolling the sharpness of the similarity distribution. A higher temperature value encour-

ages the model to consider a broader range of training examples for feature extraction, 

while a lower temperature sharpens the distribution, increasing the contrast between sim-

ilar and dissimilar pairs. 

Upon analyzing the results for different temperature values, it is clear that, especially 

in the case of visual data, a lower temperature leads to more distinct visual representations 

between different classes, as shown by the t-SNE. This result is expected, as visual data 

inherently encompasses greater variability, making lower temperatures more effective for 

extracting discriminative features. 

Conversely, tactile data is generally associated with higher levels of noise, suggesting 

that a higher temperature could be beneficial in reducing the network’s sensitivity to 
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noise. Thus, when working with visuo-tactile image pairs, finding an optimal temperature 

value that balances both modalities is essential. 

 Tactile Visual 

0.02 

  

0.06 

  

0.10 

  

0.14 

  

Figure 3. Comparison of the performance of models trained with different temperatures. 
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Furthermore, the t-SNE visualizations of the tactile data indicate that classes 23, 65, 

and 91 exhibit the greatest dispersion of features, making it difficult for the network to 

effectively discriminate between them. A visual inspection of these classes, as illustrated 

in Figure 4, confirms that their textures are quite similar. This limitation is primarily due 

to the constraints of the tactile sensor rather than the quality of the learned tactile repre-

sentations. 

   

(a) (b) (c) 

Figure 4. (a) visual image of tissue number 23; (b) visual image of tissue number 65; (c) visual image 

of tissue number 91. 

6. Conclusion 

In this paper, we presented a contrastive learning framework designed to extract 

shared representations from visual and tactile data of various fabrics. Unlike conventional 

approaches that pair an image with its augmented versions in transfer learning, we paired 

visual images of an object with their corresponding tactile images. This strategy allowed 

us to establish meaningful connections between the two modalities. 

To assess the discriminative power of the extracted features across different fabric 

types for both vision and touch, we used t-SNE visualizations. These results confirmed 

that the shared representation successfully enables object classification through both sen-

sory modalities, demonstrating the effectiveness of our approach in bridging visual and 

tactile perception. 
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