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Abstract: In today’s engineering applications, model-based fault diagnosis methods are used, espe-

cially to reduce existing costs. This study is a continuation of the previous works [1,2] conducted by 

the authors and it fundamentally includes model-based fault diagnosis methods. Within the scope 

of the study, the residual value structure of the tire pressure is integrated into the previously created 

Bayesian network structure, aiming to achieve a more accurate detection of the fault present in the 

tire. The updated method is first modeled and tested in the Matlab/Simulink environment. Subse-

quently, the algorithm structure and the resolution algorithms that allow obtaining the tire pressure 

values from the vehicle are updated in the ROS environment, and the designed method is verified 

with real vehicle tests. Here, a test scenario for the tire pressure is created, and a real vehicle test is 

conducted. The faults obtained during the test are also displayed on the Human-Machine Interface. 
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1. Introduction 

Recent advancements in technology have made autonomy features an indispensable 

part of modern vehicles. These systems enable automotive companies to provide a safer, 

more comfortable and more convenient driving experience. This transformation in the au-

tomotive industry has reached the next level with the general safety regulations (GSR) 

implemented by the European Union. As of July 2024, many systems such as drowsiness 

detection, lane keeping, emergency braking and tire pressure monitoring have become 

mandatory depending on vehicle type [3]. The common feature of these systems is that 

they all process data from sensors on the vehicle and perform actions that will either in-

crease driving safety and comfort or warn the driver. Any malfunction of the sensors can 

prevent these systems from working as intended, and this can pose a serious safety risk. 

Therefore, it is very important to be able to detect faults in sensors and determine whether 

the problem is caused by sensor reading or a physical reason. 

As a result of innovative fault detection and diagnosis methods [4–7], the safety and 

reliability of technical processes have improved. It is possible to classify fault detection 

methods under 3 main headings: Model-based methods, knowledge-based methods and 

data-driven methods [8]. Model-based fault detection is a method that effectively detects 

faults in complex systems [9]. This method detects deviations from normal operation us-

ing mathematical models of systems and determines the causes of faults. Reliable results 

are obtained by comparing the values calculated from analytical models with the meas-

ured values [10]. Model-based fault detection is advantageous in terms of cost since it does 

not bring additional cost and weight. However, correct modeling and regular updates are 

of great importance. 
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Fault trees and signal-based methods are frequently used among knowledge-based 

methods. Since these methods do not require mathematical modeling, the complexity and 

uncertainty brought by system modeling are not present [11]. In the fault tree method, the 

user is asked a series of questions expressing possible fault symptoms and the cause of 

the fault is tried to be determined according to the answers given by the user to these 

questions [12]. Although fault trees are practical and user-friendly, they have some im-

portant disadvantages. For example, when there is uncertainty about a particular cause of 

failure, the model does not address it. In addition, the fixed structure of the tree prevents 

the inclusion of expertise or previous knowledge in the diagnosis process and may have 

difficulty in identifying faults that show more than one symptom [13]. It is difficult to 

obtain a set of rules that will detect a possible fault for complex systems, and since fault 

detection is directly based on this set of rules, the system cannot detect problems if fault 

information is not collected and a lack of adaptation to unknown problems occurs [14]. 

Signal-based fault detection systems are also an effective method used to detect faults in 

complex systems [15]. This method detects faults by analyzing the measured output sig-

nals of the system. Faults in the system are usually associated with changes in the charac-

teristics of the measured signals and are detected through these changes. In [16], the au-

thors used model-based and signal-based approaches to perform fault diagnosis on an 

induction motor and concluded that although the model-based approach is more difficult 

to implement than the signal-based approach due to the complexity of the models used, 

it performs better. 

Data-driven methods approach fault detection as a pattern recognition problem. 

Based on data processing, sample data is collected and trained to obtain a classifier, and 

then the data is matched according to the classification rules [17]. Techniques such as ar-

tificial neural networks and deep learning have become quite widespread in this method 

in recent years. 

In this study, a model-based fault detection method was developed by adding four 

new residual values of wheel pressure to the structure of the Bayesian network developed 

by the authors in [1,2]. As a result of this addition, a significant improvement was ob-

served in the system’s ability to detect faults occurring in the wheels. In the remainder of 

this study, the fault detection plan and the integration of the new residual values into the 

existing Bayesian network is explained. Then, the results of the real-time tests performed 

on the test vehicle are shared and evaluated. 

2. Fault Diagnosis Structure 

2.1. Sensors 

In the model [1,2] that was previously developed by the authors, there are three re-

siduals for the yaw rate, two residuals for the tire slip and one residual for the steering 

wheel angle which gives a total of six residuals. In this work, compared to the previous 

model four more residuals are added which are based on the tire pressure. Including these 

pressure residuals, the total number of residuals is increased to 10. Table 1 illustrates the 

parameters that are measured by the sensors. 

Table 1. The definition of the parameters that are measured by the sensors. 

Symbol Description 

𝑉𝐹𝐿 Front Left Wheel Speed 

𝑉𝐹𝑅 Front Right Wheel Speed 

𝑉𝑅𝐿 Rear Left Wheel Speed 

𝑉𝑅𝑅 Rear Right Wheel Speed 

𝛿 Steering Wheel Angle 

�̇� Yaw rate 

𝑃𝐹𝐿  Front Left Wheel Pressure 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 3 of 8 
 

 

𝑃𝐹𝑅  Front Right Wheel Pressure 

𝑃𝑅𝐿  Rear Left Wheel Pressure 

𝑃𝑅𝑅  Rear Right Wheel Pressure 

2.2. Calculatıon of Tire Pressure Residuals 

In this work, ten residuals are obtained from six different models for the purpose of 

fault diagnosis. The details of these models are provided in [1,2]. Three of these models 

are used for calculating the yaw rate. Two of these models are utilized for calculating the 

wheel slip and the last model is utilized for calculating the steering wheel angle. The de-

tails of these six models and calculation of the related residuals are provided in [1,2]. In 

this work, the remaining residuals related to the wheel pressure are explained. The details 

of the reference values of each wheel is explained in Test Scenario section. The difference 

between these reference values and the pressure values measured by the tire pressure sen-

sors gives total of four residuals: 

𝑅𝑗 = �̂�𝑖 − 𝑃𝑖     𝑗 = 7,8,9,10 𝑖 = 𝐹𝑅, 𝐹𝐿, 𝑅𝑅, 𝑅𝐿   (1) 

In Equation (1), �̂�𝑖  shows the reference pressure value of each tire, whereas 𝑃𝑖  

shows the pressure value measured by the tire pressure sensor. The difference between 

these two values give the seventh, eighth, ninth and the tenth residuals. 

2.3. Fault Diagnosis Algorithm 

As explained in [1], the three residuals related to the yaw rate are obtained by taking 

the difference between the yaw rate value calculated by the model and the yaw rate value 

measured by the yaw rate sensor. Besides that, two more residuals are obtained by taking 

the difference between the wheel slip value calculated from the wheel force relation and 

the wheel slip value obtained by using the left and right wheel speed values. The sixth 

residual is obtained by taking the difference between the value calculated by the steering 

wheel angle and the value measured by the steering wheel angle. Finally, the pressure 

residuals are obtained for each wheel using Equation (1). Hence, four more residuals are 

obtained. Besides these residuals, there are total of ten faults where four of them are phys-

ical and the other six faults are related to the sensors. The faults and their descriptions are 

given in Table 2. 

Table 2. Faults and their descriptions. 

Fault Description 

𝐹1 Front Right Tire Fault 

𝐹2 Front Left Tire Fault 

𝐹3 Rear Right Tire Fault 

𝐹4 Rear Leftt Tire Fault 

𝐹5 Front Right Wheel Speed Fault 

𝐹6 Front Left Wheel Speed Fault 

𝐹7 Rear Right Wheel Speed Fault 

𝐹8 Rear Left Wheel Speed Fault 

𝐹9 Yaw Rate Sensor Fault 

𝐹10 Steering Wheel Angle Sensor Fault 

Bayes Network that relates the faults shown in Table 2 and the calculated residuals 

is illustrated in Figure 1. 
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Figure 1. Fault Diagnosis Algorithm Scheme. 

2.4. Dynamic Bayesian Network 

In this work, the fault probabilities are calculated using Bayesian Network. Accord-

ing to this structure, in the case a residual is getting activated, the fault probabilities that 

are related to this residual are dynamically updated. From Figure 1, it is observed that 

each residual is related to a combination of different faults. The technical details of the 

algorithm that is composed of six residuals (which does not include the residuals related 

to the pressure values) is given in [1]. Table 3 illustrates the specific faults that are being 

activated in the case specific combination of residuals are being activated. 

Table 3. Faults and related residuals that are activated. 

𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 𝑹𝟓 𝑹𝟔 𝑹𝟕 𝑹𝟖 𝑹𝟗 𝑹𝟏𝟎 Faults 

1 0 0 0 0 1 0 0 0 0 𝐹10 

1 0 1 0 1 0 0 0 0 1 𝐹4 

1 1 0 1 0 0 1 0 0 0 𝐹1 

1 1 0 0 1 0 0 1 0 0 𝐹2 

1 0 1 1 0 0 0 0 1 0 𝐹3 

1 0 1 0 1 1 0 0 0 0 𝐹8, 𝐹10 

1 1 0 0 1 1 0 0 0 0 𝐹6, 𝐹10 

1 1 0 1 0 1 0 0 0 0 𝐹5, 𝐹10 

1 0 1 1 0 1 0 0 0 0 𝐹7, 𝐹10 

1 1 1 0 0 1 0 0 0 0 𝐹9, 𝐹10 

Different than the previous work of the authors [1], for the activation of 𝐹1, 𝐹2, 𝐹3 

and 𝐹4 faults, also 𝑅7, 𝑅8, 𝑅9 and 𝑅10 residuals needs to exceed the determined thresh-

olds, respectively. This can be easily deduced from Equation (1). 

2.5. ROS Structure 

The general logic of ROS structure is explained in [2]. In this work, the detailsrelated 

to the new updates is explained. 

Wheel pressure data is required for updating the fault diagnosis structure of the al-

gorithm. For this reason, the ROS node structure in [2] is updated. Wheel pressure is ob-

tained using DBC (CAN Database) file that belongs to the vehicle. In that sense, some tests 
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have been performed on the vehicle to determine with which CAN message the wheel 

pressure is obtained. The data is recorded in the case the wheel pressure is lowered and 

by investigating the data, CAN message to obtain the pressure data is detected. Figure 2 

illustrates the CAN message list that belongs to the vehicle. 

 

Figure 2. The vehicle’s CAN message list. 

After CAN ID is detected, the length of the data is investigated and number of bits in 

the data is calculated. Later, CAN ID that belongs to the wheel pressure is added inside 

the code where data is parsed according to the length and unit of the data. Because the 

unit of the pressure data is in bar, the data is multipled by a coefficient to convert its unit 

to PSI. 

 

Figure 3. Data parsing function for the tire pressure. 

The residual structure is obtained by comparing the pressure data and the reference 

pressure value of the vehicle. The ROS package is updated by adding residuals into Bayes-

ian Network structure to obtain the fault probabilities. In the next section,the results ob-

tained from the real vehicle test are discussed. 

3. Test Scenario 

The tests of the fault detection algorithm integrated into ROS are carried out using 

real vehicle data. The test scenario is applied to a real vehicle, and the fault detection is 

observed to occur online. When determining the reference and threshold values for the 

test scenario, the tire pressure values of the Kia Niro vehicle are used. Accordingly, a ref-

erence value of 2.3 PSI for the front tires and 2.1 PSI for the rear tires is established. Addi-

tionally, if the residual values exceeded 0.4 PSI, it is observed that a fault occurred in the 

vehicle’s tire. These reference and threshold values are also taken as the basis during the 

test. 

3.1. Test Scenario 

Right Front Tire Pressure Fault Scenario 

Before the test scenario is conducted, the pressure of the vehicle’s front right tire is 

lowered. In this way, tire pressure value to drop below the reference, causing the residual 

value of the tire pressure to exceed the threshold value. The pressure values of the front 

right tire, along with those of the other tires, are presented in Table 4. 

During the test, the computer is connected to the vehicle, and the written ROS node 

is executed using the vehicle’s fault detection algorithm, with the tire pressures specified 

in Table 4. The output of the Bayesian network structure, shown in Figure 4, indicated that 
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the fault is statistically attributed to the front right tire. A flag value of 1 is assigned to the 

point with the highest fault probability (with the condition that it exceeds 70%), marking 

that value as faulty. As the front right tire exhibited the highest fault probability during 

this test, it is marked as faulty with a value of 1, as detailed in Table 4. 

Table 4. Tire Pressure and Tire Faults. 

Tire Tire Pressure (PSI) Tire Fault Value 

Left Front Tire 2.1 0 

Right Front Tire 1.8 1 

Left Rear Tire 2.1 0 

Right Rear Tire 2.2 0 

 

Figure 4. Fault Probability Values. 

In addition, this faulty value is shown on the HMI as in Figure 5. In this way, the user 

can easily track which sensor or actuator is faulty at that moment from the HMI. 

 

Figure 5. Displaying the Fault Result on the HMI screen. 

4. Results 

This study builds on previous research [1,2] by enhancing the fault detection capa-

bilities of existing models. Four new residual structures, specifically related to wheel 
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pressures, were integrated to improve the detection of physical wheel faults with greater 

statistical accuracy. The mathematical models developed were first simulated using 

Matlab/Simulink and then in ROS, followed by real vehicle tests to validate the simulation 

results. The tests confirmed that the proposed algorithm effectively detects faults with 

high statistical reliability, successfully displaying the detected faults on the user interface 

and providing timely feedback to the user. 

Author Contributions: Conceptualization, T.B., M.G. and B.K.; methodology, T.B. and M.G.; soft-

ware, T.B., M.G and B.K.; validation, T.B., M.G. and B.K.; investigation, T.B., M.G. and B.K.; super-

vision, T.B. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data sharing Does not apply to this paper. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Bodrumlu, T.; Gözüm, M.M.; Kavak, B. Enhanced Fault Detection of Vehicle Lateral Dynamics Using a Dynamically Adjustable 

Bayesian Network Structure and Extended Kalman Filter. In ASME International Mechanical Engineering Congress and Exposition; 

American Society of Mechanical Engineers: New York, NY, USA, 2023; p. V009T14A024. 

2. Yalcin, M.F.; Bodrumlu, T.; Gozum, M.M.; Ates, E. Dinamik Bayes Ağ Yapısı ve Genişletilmiş Kalman Filtresi Kullanılarak 

Gerçek Zamanlı ROS Uygulaması ile Otonom Bir Araçtaki Yanal Dinamiklerdeki Arıza Tespitinin Gerçeklenmesi, 24. Otomatik 

Kontrol Ulus. Toplantısı 2023, 408–413. 

3. European Commission. New Rules to Improve Road Safety and Enable Fully Driverless Vehicles in the EU; European Commission: 

Brussels, Belgium, 2022. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_4312 (accessed on 18 

July 2024). 

4. Ko, C.; Fox, D. GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models. Int. J. Robot. Res. 

2009, 28, 1524–1547. 

5. Wang, Z.; Gao, Z.; Ding, S.X. A survey of model-based fault detection and diagnosis methods. Acta Autom. Sin. 2012, 38, 823–

839. 

6. Chen, J.; Patton, R.J. Robust Model-Based Fault Diagnosis for Dynamic Systems; Kluwer Academic Publishers: New York, NY, USA, 

1999. 

7. Raghuraman, S.; Mahadevan, S. Fault detection and diagnosis using dynamic Bayesian networks and system identification. J. 

Process Control 2010, 20, 604–616. 

8. Wu, H.; Zhao, J. Deep convolutional neural network model based chemicalprocess fault diagnosis. Comput. Chem. Eng. 2018, 

115, 185–197. 

9. Ding, S.X. Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools; Springer: Berlin, Germany, 2008. 

10. Marzat, J.; Lahanier, H.P.; Damongeot, F.; Walter, E. Model-based fault diagnosis for aerospace systems: A survey. Proc. Inst. 

Mech. Eng. Part G J. Aerosp. Eng. 2011, 226, 1329–1360. 

11. Xu, Z.; Liang, M.; Chen, X.; Sun, Y. A survey of data-driven approaches for condition monitoring and fault diagnosis of electrical 

machines. IEEE Trans. Ind. Electron. 2017, 65, 3990–4001. 

12. Ji, L.; Zhang, Y.; Yan, R.; Song, Y. Fault diagnosis of power transformers based on fault tree and fault tree-analytic hierarchy 

process. Electr. Power Syst. Res. 2019, 174, 105822. 

13. Huang, Y.; McMurran, R.; Dhadyalla, G.; Peter Jones, R. Probability based vehicle fault diagnosis: Bayesian network method. J. 

Intell. Manuf. 2008, 19, 301–311. 

14. Li, D.; Wang, Y.; Wang, J.; Wang, C.; Duan, Y. Recent advances in sensor fault diagnosis: A review. Sens. Actuators A Phys. 2020, 

309, 111990. https://doi.org/10.1016/j.sna.2020.111990. 

15. Huang, B.; Zhu, Q.; Zhang, D.; Li, X. A survey of signal processing techniques for rotating machinery fault diagnosis. Measure-

ment 2019, 136, 597–619. 

16. Harihara, P.P.; Kim, K.; Parlos, A.G. Signal-based versus model-based fault diagnosis-a trade-off in complexity and perfor-

mance. In Proceedings of the 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and 

Drives, SDEMPED 2003, Atlanta, GA, USA, 24–26 August 2023; pp. 277–282. 

17. Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques part II: Fault diagnosis with knowledge-

based and Hybrid/Active approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 8 of 8 
 

 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


