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Abstract: In this paper, we consider the use of high-definition maps for autonomous vehicles (AV)
localization. An autonomous vehicle may have a variety of sensors, including cameras, lidars and
GPS sensors. Each sensor technology has its own pros and cons, for example, GPS may not be very
effective in a city environment with high-rise buildings; cameras may not be very effective in poorly
illuminated environments; and lidars simply generate a relatively dense local point cloud. In a typical
autonomous vehicle system, all of these sensors are present and sensor fusion algorithms are used to
extract the most accurate information. By using our AV research vehicle, we drove on our university
campus and recorded RTK-GPS (ZED-F9P) and Velodyne Lidar (VLP-16) data in a time-synchronized
fashion. In other words, for every GPS location on our campus, we have lidar-generated point cloud
data, resulting in a simple high-definition map of the campus. The main problem that we study in
this paper is, given a high-definition map of the environment and local point cloud data generated
by a single lidar scan, determine the AV research vehicle’s location by using point cloud "similarity"
metrics. We first propose a computationally simple similarity metric and then describe a recursive
Kalman filter-like approach for localization. The effectiveness of the proposed similarity metric has
been demonstrated using the experimental data.
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1. Introduction

Localization is a critical challenge in autonomous vehicle navigation [1]. In this paper,
we propose a high-definition (HD) map-based approach to enhance localization accuracy.
The HD map is a directed graph of GPS coordinates linked to LiDAR scans and can be
expanded with sensor data, such as cameras and radar, for greater detail [2,3]. The core
issue addressed is whether a LiDAR-generated point cloud, combined with similarity
metrics, can accurately determine the vehicle’s location. We assert this is feasible using
computationally efficient algorithms. While human drivers often rely on visual matching
to locate themselves, computer-based visual matching offers unique advantages and chal-
lenges. Our focus here is on LiDAR point cloud matching [4]. LiDAR output consists of
three-dimensional point sets, generally considered more computationally tractable than
processing color images. This research builds on our previous work [5–10], funded by NSF
and Florida Polytechnic University. Using our autonomous vehicle platform, we collected
over 30 min of synchronized LiDAR scans and GPS coordinates during campus-wide driv-
ing. This dataset is employed to validate the proposed point cloud matching algorithms,
similarity metrics, and localization methods.
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2. Data Collection

A point cloud is defined as a finite set of points in R3, namely any set of the form

P = {xk : xk ∈ R3, k = 0, · · · , N − 1}

is a point cloud. In an AV application, the lidar sensor output will be a point cloud. Even
though the points xk’s can be indexed by an integer, any permutation will result the same
point cloud object. Furthermore, even if these points are stored in an array-like structure
with each point having an index (e.g., list or matrix), we still consider the point cloud as
a set.

An example point cloud is shown in Figure 1, and the Google street view of a nearby
location is shown in Figure 2. This is the entrance of the IST building at Florida Polytechnic
University.

Figure 1. Point cloud obtained from our Velodyne VLP-16 lidar sensor.

Figure 2. Google street view of a nearby location.

The point cloud shown in Figure 1 is one of our 19,500 point clouds collected while
we drove on the Florida Poly campus using our AV research vehicle. This particular
point cloud consists of 18,165 three-dimensional vectors, in other words can be stored as
a 18,165 ×3 real-valued matrix. The 3D visualization shown in Figure 1 is generated by
using the Python Open3D library.

Almost all of the 19,500 point clouds have a different number of points. In Figure 3, a
histogram of the number of points is shown. We see that the mean value of the number
of points is 21,533 and the standard deviation is 1685 points. The Velodyne VLP-16 lidar
sensor used in this application has 16 lasers, each scanning a different polar angle. In this
study, a 360-degree lidar scan was completed in 0.1 s, in other words, the lidar frame rate
was 10 fps.
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Figure 3. Histogram of the number of points in our point clouds.

While driving on the Florida Poly campus, we also recorded our AV research vehicle’s
GPS location using an RTK-GPS. The particular RTK-GPS system used in this study was
ublox ZED-F9P sensor and the C099-F9P application board. The RTK-GPS output rate was
set to 2 Hz, and FDOT’s Florida Primary Reference Network was used as base stations. In
Figure 4, the path followed by our AV research vehicle is shown in Cartesian coordinates,
and the origin is a point close to the newly constructed BARC Applied Research Center.
The "map" view is shown in Figure 5. The RTK-GPS output is basically in text format as
described in the NMEA 0183 standard. If this is saved in KMZ format, it can be viewed on
Google Earth as shown in Figure 5.
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Figure 4. The path followed by our AV research vehicle in Cartesian coordinates, i.e., (x(t), y(t), z(t))
versus t. The starting point is a point close to the BARC Applied Research Center.

The data collection process took approximately 1950 s, a little over half an hour. At
the end, we have several lidar point clouds, and RTK-GPS location measurements:

Pk, gk k = 0, · · · , N − 1

where N = 19,500, Pk’s are point clouds, and gk’s are the location tags as three dimensional
vectors. Since the RTK-GPS frame rate is 2 fps, and the lidar frame rate is 10 fps, we first
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synchronized the clocks of these two sensors and then interpolated the RTK-GPS data by a
factor of 5 to bring it to a 10 fps rate.

Figure 5. The path followed by our AV research vehicle shown in Google Earth.

3. Point Cloud Similarity Metrics

In this section, we will consider the problem of measuring the similarity between two
point clouds. If P1 and P2 are two-point clouds, and if it is possible to find a translation
vector vT ∈ R3 and a rotation matrix R ∈ SO(3) such that

P1, and RP2 + vT

significantly overlaps, then it is reasonable to call P1 and P2 as similar. In other words,
one can say that P1 and P2 match. The main idea behind this lidar-based localization is
point cloud similarity or matching. Defining an unambiguous and computationally simple
method is of extreme importance.

Since rotations do not change the center of mass of the point cloud, without loss of
generality, we may assume that point clouds have their centers already aligned. To measure
the degree of overlap, we propose the use of a distance metric defined for point clouds.
Therefore, if dist is a measure of distance between two point clouds, our proposed similarity
metric will be

sim(P1, P2) = min
R∈SO(3)

dist(P1, RP2)

and because of already assumed center of mass alignment between P1 and P2, we drop the
vT term. In this equation, SO(3) represents the set of rotation matrices.

In the literature, there are various point cloud distance metrics like Chamfer distance,
Hausdorff distance, one-sided Hausdorff distance, and Sinkhorn distance. In this study, we
adopt the Chamfer distance which is defined as

dist(P1, P2) =
1

2N1

N1−1

∑
i=0
|ui − NN(ui, P2)|+

1
2N2

N2−1

∑
j=0
|vj − NN(wj, P1)|

where P1 is the point cloud {u0, · · · , uN1−1} consisting of N1 three dimensional points,
and P2 is the point cloud {v0, · · · , vN2−1} consisting of N2 three dimensional points. The
function NN is called the nearest neighbor function and is defined as

NN(x, P) = arg min
y∈P
‖x− y‖2,

where ‖ · ‖2 is the Euclidean distance. In other words, NN(x, P) is the point in the point
cloud P that is closest to x in Euclidean distance.
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4. A Simplified Similarity Metric

One problem with the "ideal" similarity definition given in the previous section is the
complexity of search over SO(3) and computational costs associated with Chamfer distance.
Since our point clouds have around N = 20,000 points, the computation of the NN function
will require a for loop of size N. The chamfer distance formula has a sum over N as well,
i.e., another for loop of size N. On top of all of this, we have a search over SO(3), i.e., a
two-dimensional search over [0, 2π)× [0, 2π).

If the AV vehicle is traveling at higher speeds, we will have a very short time interval
to finish all localization calculations. Therefore, we would like to propose less "ideal" but
computationally simpler similarity metrics that are likely to result similar matching scores.

First, consider each point cloud in spherical coordinates,

P = {(rk, θk, φk) : k = 0, · · · , N − 1},

and drop the radius info and generate the following set of two-dimensional points

Q = {(θk, φk) : k = 0, · · · , N − 1}.

Dropping the radius info will result in some loss of information, but greatly simplifies the
whole process. Then, consider the 2d-histogram of this set Q, which will be effectively
a matrix, H, of size b× b where b is the bin size used in 2d-histogram generation. For a
typical b = 50− 100, the resulting b× b matrix can be viewed as an image. For example,
for the lidar scan shown in Figure 1, histogram analysis will result in the image shown in
Figure 6.

Figure 6. Image visualization of the 2d histogram of the point cloud shown in Figure 1.

Rotations of a point cloud P, correspond to translations in the Q representation. Since
we are using the spherical coordinate system, all translations are modulo 2π in the first and
the second coordinates. If we have two point clouds, P1 and P2, instead of the similarity
metric defined in the previous section, the following
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max
k,`

∑
i,j

H1[i, j]H2[i + k, j + `]

can be used as a computationally simpler but not necessarily equivalent alternative. Note
that, all H matrix indices are considered as modulo b. The double summation used in the
above equation is the well-known correlation formula commonly used in image processing.
To capture all possible rotations, we do allow row and column circular shifts and choose
the max possible value as the similarity score. The double summation, as a function of k, `,
can be computed using FFT techniques.

In Figure 7, the image representation of two point clouds is shown. The one on the left
is for the 4000th point cloud, and the one on the right is for the 4050th point cloud. Figure 8
shows how the newly defined similarity changes with the distance. It is clear that, as we
move away from the point corresponding to the 4000th lidar scan, or the location at time
t = 40, the similarity between the 4000th lidar scan and the lidar scan at the new location
drops sharply.

Figure 7. Image representation of two point clouds captured 5 s apart, t = 40 and t = 45.
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Figure 8. Similarity vs distance plot at time t = 40 s.
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Let’s do the same analysis at time t = 90. In Figure 9, the image representation of
two-point clouds is shown. The one on the left is for the 9000th point cloud, and the one on
the right is for the 9050th point cloud. Figure 10 shows how the newly defined similarity
changes with the distance. It is clear that, as we move away from the point corresponding
to the 9000th lidar scan, or the location at time t = 90, the similarity between the 9000th
lidar scan and the lidar scan at the new location drops sharply.

Figure 9. Image representation of two point clouds captured 5 s apart, t = 90 and t = 95.
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Figure 10. Similarity vs distance plot at time t = 90 s.

Proposed Localization Approach

The analysis presented above clearly shows the feasibility of a 2-dimensional binary
search type approach for localization. Assume that we do know our current location, and
say after 1 s, we get a new lidar scan. By using this new lidar scan and the proposed
similarity scoring methodology, we can update our location. Among all the possible
locations that can be reached within 1 s, we choose the location that results maximum
similarity. More formally, we can write

S1: Start with k = 0, and a known current location, gk ∈ R3.
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S2: After 1 s, get a new lidar scan Pk+1
S3: Let Sk = {g′` : ` = 0, · · · , Nk − 1} be the set of all possible GPS locations in the

high-definition map that can be reached from gk within 1 s.
S4: Let Pk be the set of lidar point clouds for the GPS locations in Sk. Recall that, the

database that maps a GPS location to a point cloud will be called the high-definition
map.

S5: Find the point cloud in Pk that is the most similar to Pk.
S6: Update gk+1 as the GPS location corresponding to the point cloud found in Step 5.
S7: Increase k by 1, and go to Step 2.

5. Conclusions

By using our AV vehicle, we drove on our campus for more than 30 min and saved lidar
scans and GPS coordinates. All of this experimental data is used to test the effectiveness of
the proposed point cloud matching algorithms, similarity metrics, and localization. Experi-
mental results show that the proposed approach is computationally simple and effective.
The proposed localization approach is recursive and is based on the high-definition map
approach outlined in this work. In future work, we plan to consider exploring alternative
similarity metrics and compare their performance.
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