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Abstract: Gait disorders are significant indicators of neurological diseases such as Parkinson’s dis-

ease and reduce the quality of life of patients. Soft body exoskeletons offer a therapeutic solution to 

address these disorders. Although the detection and classification of gait disorders is essential for 

treatment and diagnosis, a single standardized gait analysis system for exoskeleton control remains 

absent. This study presents the design of a real-time gait analysis system using wearable sensors. 

This system generates real-time feedback data by evaluating kinematic, kinetic and physiological 

parameters of gait. The digitized data can be used for ML integration and exoskeleton control. 
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1. Introduction 

Gait disorders are significant indicators of neurological diseases such as Parkinson’s 

disease and reduce the quality of life of patients [1]. Although the detection and classifi-

cation of gait disorders is essential for treatment and diagnosis, there is currently no single 

standardized gait analysis system [2,3]. Wearable sensors offer a promising solution, 

providing accessible gait analysis by capturing periodic movements during walking. 

These sensors enable continuous monitoring, allowing for a better understanding of gait 

dynamics over time [4]. In addition to analysis, real-time sensory feedback controlled soft 

body robotic exoskeletons improve walking by applying controlled robotic forces to cor-

rect abnormal gait patterns for optimal therapeutic effects [5]. Effective usage of these 

technologies can improve rehabilitation process for patients, or help in their daily life [6]. 

The development of real-time gait analysis systems is critical to advance our under-

standing of gait mechanics. In this way we can provide timely interventions for patients 

that uses soft body exoskeletons [7,8]. This study presents the design of a real-time gait 

analysis system using different types of wearable sensors. This analysis system can be 

used to both diagnose and control soft body exoskeletons in Parkinson’s patients. Weara-

ble sensors consist of physiological, kinetic and kinematic sensors positioned on the pri-

mary muscle groups involved in gait. This strategic placement ensures comprehensive 

data collection related to muscle activity and movement patterns [9,10]. Also, measuring 

ground reaction forces, the system can provide insights into weight distribution and bal-

ance during walking. All sensor data is acquired and wirelessly transmitted to the server 

for signal processing by a central microcontroller. 

This real time analysis system supports the development of adaptive control algo-

rithms for the exoskeletons, enhancing their responsiveness to the user’s needs. Integra-

tion of ML techniques could potentially allow the system to learn from user data and op-

timize therapy plans over time [10]. 
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1.1. Physiological Metrics 

Surface electromyography (sEMG) is a biomedical method used to measure muscle 

activity. In this system, low-amplitude signals are obtained from muscle activity meas-

ured with electrodes placed on the skin surface [11]. In our system, electrodes were placed 

on the motor endings of the Gastrocnemius and Soleus muscles associated with walking. 

The signals obtained here will be amplified and filtered by the signal conditioning circuit. 

The obtained data is digitized and then transferred to our server and processed to extract 

the physiological parameters required for gait analysis [12]. 

Typical surface EMG signals are in the range of ±10 mV, with frequency content gen-

erally ranging from 6 Hz to 600 Hz, with a dominant frequency range of 20 Hz to 150 Hz. 

These signals contain noise such as ambient noise from electromagnetic devices and trans-

ducer noise due to impedance change caused by motion induced impedance change in 

electrode-skin contact. With the electronic circuit we have built, the EMG signals become 

a representation of the physiological activity of the muscles after noise reduction [13]. 

EMG data extracted and digitized in this way can be used for exoskeleton control [14]. 

1.2. Kinetic Metrics 

An important mechanical data to be obtained in gait analysis is vertical ground reac-

tion forces (vGRF). This force between the sole of the foot and the ground is sensed by 

force-based resistances (FSR) embedded in the sole [15]. GRF can be used to understand 

the characteristics of normal and pathological gait, enabling the detection of pathological 

gait. In this way, exoskeletons can offer adaptive gait compensation to the patient in a 

personalized manner [16]. 

1.3. Kinematic Metrics 

Among the parameters required for gait analysis are kinematic data consisting of an-

gle changes in the joints. Acceleration and angular rate change measurements can be made 

in three-dimensional space by means of Inertial Sensors placed on the limb. These inertial 

data from the sensors can be fused with a Kalman or complementary filter to reveal the 

orientation of the limbs and the joint angles accordingly. In addition, turning these orien-

tation data into a three-dimensional modeling structure is also included in the feedback 

systems used for exoskeletons [17,18]. The IoT inertial measurement unit (IMU) sensors 

placed in our system can extract real-time orientation data using a complementary filter 

and perform 3D structural modeling via MATLAB. In this way, a digital representation of 

the gait is created [19]. 

2. Materials and Methods 

In this study, physiological, kinematic and kinetic data were collected in real time 

from the user’s leg. Different types of sensors were placed appropriately on muscle groups 

and the foot. Physiological and kinematic sensor data were collected via a wireless device 

attached to the user’s leg with a belt and processed by a central microcontroller. Kinetic 

data was collected by load cells placed on the sole of the shoe. The data was transferred in 

real time to a server and then converted into a database format suitable for machine learn-

ing. 

EMG signal aqucation circuit was used to process physiological data, Ground Reac-

tion Force Acquisition circuit was used to collect kinetic data and Inertial Measurement 

(IMU) sensors were used to collect kinematic data. The components and devices designed 

for this purpose are shown in Figure 1. 
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(a) (b) (c) 

Figure 1. Photographs of the basic devices we produced within the scope of the project (a) The main 

device connected to the foot, the EMG cables coming out of it are visible. (b) Measuring slippers 

with force sensitive resistors placed underneath, which we use for ground reaction force measure-

ment. (c) Printed circuit board (PCB) that we produced. 

2.1. EMG Signal Acquisition 

We have designed and produced low-cost EMG singnal acquisiton hardware in ac-

cordance with our requirements and integrated it into your wearable device. This system, 

which will be used to obtain physiological data; signal conditioning circuit, Power distri-

bution circuit, analog to digital converter will be examined in three parts. The summary 

diagram of the system is shown in Figure 2 [20]. 

 

Figure 2. Summary diagram for EMG signal conditioning circuit and components. 

2.1.1. Preamplifier 

Low-amplitude EMG signals from electrodes in the antagonist muscle regions are 

affected by noise sources and must be de-noised and amplified to accurately represent 

muscle activity. Here, the common mode voltage is amplified using instrumental ampli-

fiers to suppress and amplify the noise. Compared to conventional op-amp amplifiers, 

instrumentational amplifiers have a much higher CMRR (common mode rejection ratio), 

making them very suitable for use as pre-amplifiers in EMG sensors. 

An ideal preamplifier has a high CMRR and a very high input impedance. It is posi-

tioned close to the signal source and can strongly suppress DC signals. INA128 (Texas 

Instruments, Dallas, TX, USA) was chosen as the instrumentation amplifier in our system. 

The INA128 is a widely preferred instrumentational amplifier for biomedical signals, 

characterized by its low cost and high data accuracy. The device is available in an 8-pin 

SOIC package and is designed to adapt to various application scenarios. It can increase 

the adjustable gain up to G = 10,000 with RG resistor [21]. 

INA128 has important technical features such as low offset voltage (VOS = 50 μV), 

low drift (Vdrift 0.5 μV/°C), input bias current within acceptable limits (IB = 5 nA), and 

low noise level (8 nV/√Hz, 0.2 μVpp). In addition, its high CMRR value (120 dB) is higher 
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than the system requirement of 100 dB due to its intended use in our system. It can also 

be used in our system with its bandwidth frequency (1.3 MHz). The inputs are protected 

up to ±40 V and have a wide supply range (±2.25 V to ±18 V). In our system, it will be 

supplied with ±7.4 V. Its low quiescent current (Iq: 700 μA) makes it suitable for wearable 

applications. The manufacturer has also indicated that the INA128 can be used in medical 

instrumentation. As a result of the comparisons, it was decided to use the INA128 integra-

tion in our system as a cost-effective solution [22]. 

The maximum amplifier noise that can be seen in the preamplifier according to the 

manufacturer’s specifications is calculated as 74 μV in the Equation (1): 

𝑉𝑛𝑜𝑖𝑠𝑒,𝐼𝑁𝐴 = (
8 nV

√𝑓
+ 0.2 μV × 𝑉𝑃𝑃) × 𝐺𝑆 = (

8 × 10−9 V

√𝑓
+ 2 × 10−7 V × 14.8) × 28 dB = 74 µV (1) 

To achieve this gain value, the gain resistors (RG) shown in the schematic are set. The 

RG resistors that should be used according to the desired gain value for the INA128 instru-

mental amplifier are calculated with the formula determined by the manufacturer [23]. 

𝐺𝑃𝑅𝐸 ≤ 20 =
50𝑘

(𝑅𝐺1 + 𝑅𝐺2)
+ 1 → (𝑅𝐺1 + 𝑅𝐺2) = 2.63 kΩ ≅ 2 ×  1.3 kΩ%5 (2) 

Two commonly used 1.3 kΩ resistors with a precision of 5% were chosen as RG gain 

resistors (RG,TOTAL = 2.6 kΩ 5%). This gives a gain of 20.2 ± 1 (26.1 dB ± 0.5 dB). There is also 

a DRL circuit connected to the preamplifier circuit. This circuit is used to suppress noise 

caused by electromagnetic interference and is connected to the preamplifier through RG 

resistors. Thanks to the DRL, the CMRR is improved by active feedback. 

U1, R1 and R2 in the schematic in the Figure 3 belong to this DRL circuit. The amplifier 

(U2) and the resistors RG (RG1, RG2) on the right side of the figure belong to the instrumental 

amplifier. The DRL system can be simplified as in the Figure 4. 

 

Figure 3. Schematic of preamplifier and DRL circuits. 

 

Figure 4. Simplified diagram of DRL. 

2.1.2. Driven Right Leg (DRL) Circuit 

Increasing CMRR and suppressing noise is an extremely important goal for biosignal 

measurement systems such as EMG. To achieve higher CMRR, it is also necessary to sup-

press EMI noise. EMI noise is usually caused by the capacitive coupling of electromagnetic 

waves generated by electrical devices in the environment to the patient’s body. Effective 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 5 of 13 
 

 

suppression of such noise is essential for the design of an efficient EMG system [22]. By 

using a DRL (Driven Right Leg) circuit in our system, we increased the CMRR value by 

reducing EMI-induced noise. The DRL circuit has a feedback system and detects the com-

mon mode signals from the patient and actively suppresses the noise in the system by 

sending back the reverse phase signal it generates. Thus, the signal-to-noise ratio (SNR) 

has also improved. The circuit in the figure shows the DRL circuit along with the electrode 

and cable modeling [23]. 

DRL circuitry has safety advantages, resistors in the circuit protect the patient by lim-

iting the current. In worst scenario maximum current under single fault condition should 

be below 50 uA. In our circuit 17.65 uA is provided as the highest current value that can 

be reached [24]. The DRL circuit can increase the CMRR of the system by up to 18dB at 

frequencies where EMI noise is dominant, such as 50/60 Hz [25]. 

2.1.3. Motion Artifact Filter 

Movement artifact caused by electrode-skin interaction usually observed below 20 

Hz [26]. Since the examination of EMG signals from muscles between 24–400 Hz is suffi-

cient for the acquisition of many medical signals, we filter these very low frequency sig-

nals in our system. Therefore, in our system, we aimed to perform analog filtering below 

24 Hz, where EMG signals occur at very low power and the dominant signal is motion 

artifacts [27]. We perform this filtering process by using two 2nd order unity-gain sallan-

key filters in our analog circuit. The parameters used for the circuit with Bessel character-

istics are given in the Table 1 [28]. 

Table 1. Noise Filter Design Parameters. 

Specification Stage 1 Stage 2  Equivalent 

Passband (−3 dB) 14 Hz 20 Hz 24 Hz 

Stopband (−40 dB) 1 Hz 1.5 Hz 4 Hz 

Group Delay @fc 10 ms 8 ms 18 ms 

C1 = C2 1 uF 1 uF - 

R1 16 kΩ%5 12 kΩ%5 - 

R2 12 kΩ%5 9.1 kΩ%5 - 

 

Figure 5. Frequency domain simulation results of motion artifact filter. 

 

Figure 6. Schematic of motion artifact filter. 
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2.1.4. Anti-Aliasing Filter 

In biopotential measurement applications, ADC (Analog-to-Digital Converter) mod-

ules are used to digitize the signal. ADC modules sample analog signals at specific fre-

quencies. However, high frequency signal components cannot be sampled when they can-

not reach sufficient sampling frequency according to Nyquist’s theorem. These unsam-

pled signals, even if they are real physiological values to be measured, overlap during A/D 

conversion and cause a distortion called aliasing noise [29]. 

To suppress aliasing noise, the signal must be filtered with an AAF (Anti-aliasing 

Filter) before going to the ADC. The AFF consists of a low pass filter and an op-amp used 

as a buffer at the output of this filter. The op-amp output is connected to a passive low 

pass filter ADC input [30,31]. 

The ADC we use has a 16-bit resolution and a sampling frequency of 860 Hz. In this 

case, the Nyquist frequency is 430 Hz. Therefore, an RC filter with a corner frequency of 

430 Hz is added to the buffer output of the ADC. Before the buffer, an RC filter with a 

corner frequency of 400 Hz was used, which is the upper limit of the measured EMG sig-

nals. 1 uF capacitors will be used for the filters. The required resistance values are also 

calculated in the Equation (3). 

𝐺𝑃𝑅𝐸 ≤ 20 =
50𝑘

(𝑅𝐺1 + 𝑅𝐺2)
+ 1 → (𝑅𝐺1 + 𝑅𝐺2) = 2.63 kΩ ≅ 2 ×  1.3 kΩ%5 (3) 

 

Figure 7. Frequency domain simulation results of anti-aliasing filter. 

2.1.5. Full-Wave Precision Rectifier 

A full wave precision rectifier with a ratio of 1:1 is used to ensure that the negative 

components are rectified. The schematic of the circuit in our system is shown in the Figure 

8 [32,33]. 

 

Figure 8. Schematic of anti−aliasing filter. 
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Figure 9. Schematic of full wave precision rectifier. 

2.1.6. Moving Window Integration 

In order to make rectified EMG signals smoother and easier to analyze, we integrate 

the signal by adding a moving window integration circuit to our analog circuit [34]. Since 

EMG signals that we are processing contain bursts of muscle activity that occur over rel-

atively short periods (2 to 50 ms). A 100 ms window is used because it captures enough 

information about muscle activation without losing temporal resolution. A shorter win-

dow might not capture enough muscle activity, leading to a more jittery or noisy inte-

grated signal. A longer window would smooth the signal too much and reduce the ability 

to detect rapid muscle contractions [35]. The ratios of the passive integrated parameters 

required to achieve a given integration time in the circuit were found as in the Equation 

(3). A 10 kΩ RIN resistor was added for current limiting [34,35]. 

𝑅𝑓 =
𝜏

𝐶𝑓
=

0.1𝑠

1 × 10−6𝐹
= 100 kΩ (4) 

2.2. Ground Reaction Force Acquisition 

In our system, we used half-bridge load cells capable of measuring up to 500 N as 

force-sensitive resistors (FSRs). Four load cell transducers, each measuring 34 × 34 × 2.5 

mm, were utilized. These load cells have a sensitivity of 2 mV/V and are powered by an 

excitation voltage (VE) of ±9 V, resulting in a signal output of 19 mV under maximum 

load. To ensure accurate digitization of the signal, it must be amplified and subjected to 

several signal processing stages. The summary diagram of the system is shown in the Fig-

ure 10 [36]. 

 

Figure 10. Summary diagram for GRF acquisition circuit. 

Half-bridge load cells were placed at four points on the insole. Transducer A was in 

the rearfoot, at the medial heel; transducer B in the lateral midfoot; transducer C under 

the 4th metatarsal head; and transducer D between the 1st metatarsal head and the big 

toe. The placements are approximately shown in the system diagram. These vGRF meas-

urements from four distinct points will allow for the calculation of values such as contact 

area, contact characteristics, and step angle [37]. 

A power dependent full bridge circuit is constructed using half bridge loadcells and 

precision 1 kΩ ± 1% resistors on the circuit board. This circuit is used to generate the dif-

ferential signal. To obtain the vGRF, preamplification is performed first. Here the initial 

gain is set to 50 (+20 dB). The maximum differential signal amplitude, which was 
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previously 19 mV, is increased to 800 mV using an Instrumentational amplifier while com-

mon mode noise is suppressed. The preamplification circuit and the subsequent anti-ali-

asing filter are similarly used in the EMG. A secondary driver amplifier with 5.7 gains is 

then used to prepare the signal for digitalization. Schematics of our system is shown in 

Figure 11. 

 

Figure 11. Schematic of GRF acquisition circuit. 

2.3. Inertial Measurement 

For the kinetic data we aim to obtain in addition to physiological and mechanical 

data, IMU (inertial measurement unit) sensors were placed on three regions of the leg: 

femoral, crural, and pedal. These sensors collect real-time accelerometer and gyroscope 

data. We selected the MPU6050 IMU module (Invensense, San Jose, CA, USA) [38]. The 

data are fused using a complementary filter and converted into roll and pitch values. Sub-

sequently, the data from the three sensors are analyzed using basic mathematical equa-

tions to calculate joint angles between the limbs. This data is then used for 3D structural 

construction in MATLAB. Equations (5) and (6) were used for the roll and pitch calcula-

tions: [39,40] 

𝑟𝑜𝑙𝑙 = 𝛼 × (𝑟𝑜𝑙𝑙 + 𝑔𝑦𝑟𝑜𝑥 ∙ 𝑑𝑡) + (1 − 𝛼) arctan (
𝑎𝑐𝑐𝑦

𝑎𝑐𝑐𝑥
) (5) 

𝑝𝑖𝑡𝑐ℎ = 𝛼 × (𝑝𝑖𝑡𝑐ℎ + 𝑔𝑦𝑟𝑜𝑦 ∙ 𝑑𝑡) + (1 − 𝛼) arctan

(

 
−𝑎𝑐𝑐𝑥

√𝑎𝑐𝑐𝑦
2 + 𝑎𝑐𝑐𝑥

2

)

  (6) 

For the orientations of each segment, Equation (7) was applied: 

𝑥𝑖 = 𝑥𝑖−1 + 𝑙𝑒𝑛𝑖 × cos(𝑟𝑜𝑙𝑙) × cos(𝑝𝑖𝑡𝑐ℎ) 
𝑦𝑖 = 𝑦𝑖−1 + 𝑙𝑒𝑛𝑖 × sin(𝑟𝑜𝑙𝑙) 
𝑧𝑖 = 𝑧𝑖−1 + 𝑙𝑒𝑛𝑖 × sin(𝑝𝑖𝑡𝑐ℎ) 

(7) 

The angles between the segments were calculated using Equation (8). 

𝐴 + �⃗⃗� = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧 

|𝐴| = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2 𝑎𝑛𝑑|�⃗⃗�| = √𝐵𝑥

2 + 𝐵𝑦
2 + 𝐵𝑧

2 

𝑎𝑛𝑔𝑙𝑒(𝜃) = arccos (
𝐴 + �⃗⃗�

|𝐴| ∙ |�⃗⃗�|
) × (

180

𝜋
) 

(8) 

With accelerometer and gyroscope data from the three sensors, we can determine the 

roll and pitch values of each limb, their intersection points, intersection angles, and ap-

proximate positions in space [41]. 
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2.4. Analog-To-Digital Module 

An analog-to-digital converter (ADC) was required to digitize the analog data from 

the sEMG and vGRF sensors in the system. The AD1115, a low-cost and reliable ADC, was 

selected for this purpose. This 4-channel ADC offers 16-bit resolution and can sample at 

860 SPS (samples per second). Additionally, its built-in programmable gain amplifier 

(PGA) allows for dynamic adjustment of the system’s gain. Tests were conducted for the 

AD1115 in various environments and configurations, evaluating its PGA, SPS, and firm-

ware filter settings [42]. The record for the highest noise levels observed during experi-

ments conducted at different configurations are provided in Tables 2 and 3. Test results 

showed that adding the firmware filter or removing the PGA had no significant positive 

impact on noise levels, and thus, these features were not implemented in the system. 

Table 2. Comparation of different sample rates. 

Specification SPS = 860 SPS = 240 SPS = 128 

NoiseMAX (Value) 19.05 11.54 5.50 

NoiseMAX (Bits) 4.25 3.53 2.45 

Standart Deviation 8.07 4.63 1.97 

Table 3. Comparation of different firmware configurations. 

Specification Control Firmware Filter No PGA (adj.) 

NoiseMAX (Value) 19.05 20.19 5.90 (adj. 23.6) 

NoiseMAX (Bits) 4.25 4.33 2.56 (adj. 4.56) 

Standard Deviation 8.07 8.28 2.02 (adj. 8.09) 

3. Results 

3.1. Physiological Measurements 

Experimental setup was designed to observe voluntary muscle contractions, and te-

tanic muscle contraction detection was successfully achieved. 

 
 

(a) (b) 

Figure 12. The EMG Measurement Setup. (a) The experimental interface of our system and EMG 

measurement results. The blue line represents raw data, while the orange line indicates moving 

median filtered data. 

In Figure 13, the data from the IMU and EMG sensors are synchronized with the 

same timestamp. The results indicate that the raw EMG results provide a favorable out-

come for observing phasic muscle contraction activities occurring within one second. 

Upon examining all these results, it is demonstrated that we have a circuit capable of cap-

turing physiological muscle signals in the range of 24–400 Hz at a sampling rate of 860 

SPS. The total resolution is 45 nV, with the calculated lowest real sensitivity being 1.5 μV 

with a 5-bit uncertainty. The baseline noise is below 15 μVrms. The utilized DRL and 
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instrumentation amplifiers, when used in conjunction, offer a CMRR greater than 110 dB 

as per their design. Measurements for the SNR could not be conducted. 

 

Figure 13. EMG Contraction Test Results. The orange line represents rectified raw EMG data. 

3.2. Ground Reaction Force Measurements 

As shown in Figure 14, ground reaction force (GRF) was calculated from the data 

obtained from the sensors, and the center of pressure (CoP) was determined. These data 

were processed using algorithms in MATLAB and converted into data tables that can be 

used for detecting anomalies or characterizing movements. A separate data table was gen-

erated for each step, allowing for the digitization of each step’s characteristics, reduced to 

48 variables. Example variable table is displayed in Figure 15. 

  
(a) (b) 

Figure 14. Ground Reaction Force Measurement Graphs for One Step. (a) Separate evaluation of 

data from four different sensors. (b) Resultant GRF obtained by combining sensor data. 

 

Figure 15. An example data table obtained by calculating the selected parameters displays each row 

as representing a single step from a different sensor. 

3.3. Inertial Measurements 

Kinematic data were collected through the inertial sensors and combined in real time 

using a complementary filter. The 3D structural modeling created in MATLAB visually 

matches the actual test data. The measurement sensitivity of the gyroscope data obtained 

from the IMU is specified as ±250°/s with a sensitivity of 131 LSB/°/s. The sensitivity for 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 11 of 13 
 

 

acceleration measurements is set at ±2 g with a value of 16,384 LSB/g. These sensitivy will 

enable a more comprehensive analysis by aligning them with physiological data [43]. 

   
(a) (b) (c) 

Figure 16. Visualization of Inertial Data During Walking. The figures display the angles between 

joints and orientation information. (a) Heel strike, (b) Foot flat, (c) Midstance. 

4. Discussion 

This study presents a comprehensive gait analysis system using wearable sensors to 

capture real time data for soft body exoskeleton control in patients with gait disorders. By 

strategically positioning sensors on key muscle groups and integrating signal processing 

techniques, we obtain diverse data related gait. Physiological measurements from EMG 

sensors effectively captured muscle activity with low noise. GRF measurements provided 

insights into foot pressure distribution, enabling kinetic analysis of gait characteristics. 

Inertial measurements, combined with complementary filtering generated 3D models of 

limb movement, matching real-world test data and provides joint kinematics data. These 

results confirm the system’s ability to provide real-time feedback for soft body exoskele-

tons. Furthermore, a ML integration will allow personalized therapy and continuous ad-

aptation, which could improve therapeutic outcomes and overall quality of life for pa-

tients. 
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