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Abstract: Analog computing had its prime between the 1960 and 1970 years. With the raise of pow-
erful digital computers analog computing using transistor and OPAMP circuits vanished nearly
completely, but gained an increasing interest in recent years again. In this work, we will consider in
particular analog ANN that are considered as co-processors for digital systems. We will show that
the training result of an ANN using digital algorithms can be transferred on analog transistor cir-
cuits. But this process is still a challenge and can fail. So we discuss the limitations and possible
solutions to generate and create analog ANN (AANN).

Keywords: Analog Computing; Analog Artificial Neural Networks; Machine Learning; Organic
Electronics; Printing technologies

1. Introduction

For decades signal processing was performed with analog electronics, including the
era of analog computers, e.g., used for solving differential equations. In the last five dec-
ades, most analog circuits were substituted by digital electronic systems. Artificial Neural
Networks (ANN) were originally inspired by analog systems, and implemented originally
with analog electronics, but limited to one perceptron. Today they are computed by dis-
cretized digital computers. In this work, analog ANN (AANN) should be considered as
co-processors and investigated with respect to their digital counterparts.

The motivation of this work is manifolded. Considering highly miniaturized and em-
bedded sensor nodes based on digital silicon electronic (e.g., by using a microcontroller),
providing less than 20 kB RAM and integer arithmetic only, computations of ANN are
possible by transforming floating-point arithmetic models to scaled integer models with-
out loss of accuracy (details can be found in [7]). But from a resource point of view with
respect to digital logic, the computation of a fully connected ANN with N nodes requires
roughly estimated about N?*k transistors for storage (k is about 4-6) and M transistors for
8-bit arithmetic and code processing logic (M is about 10-10°-100-10%). A weighted analog
electronics summer circuit requires [ + 1 resistors and a difference amplifier with about 4-
8 transistors (at least 2). An approximated non-linear transfer function, e.g., the sigmoid
function, can be built from at least two transistors [1], and typically less than 20 transistors
[2] if the gradient of the function is computed, too. The hyperbolic tangents function can
be implemented with only two diodes [3]. Such small circuits are well suited for printed
(organic) transistor electronics replacing more and more silicon electronics, but still limit-
ing circuits to a size of about 100 transistors and posing reduced stability, reproducibility,
and statistical variance (of the entire circuits).
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In our work we address the following research questions to the computational ANN
sub-domain:

1. Can AANN be trained with a digital node graph and floating point arithmetic per-
forming gradient-based error optimization and finally be converted to an analog cir-
cuit approximation (assuming ideal operational amplifiers)?

2. Can AANN be trained with a digital node graph and floating point arithmetic per-
forming gradient-based error optimization and finally be converted to an analog cir-
cuit approximation assuming non-ideal circuits, especially with transistor-reduced
circuits?

3. Are organic transistors suitable?

The implementation and approximation error of simple non-linear activation func-
tions using transistor electronics are investigated and discussed. Instead using real analog
electronics, we will substitute the circuits by a simulation model using the spice3f simula-
tor [8], particularly the ngspice version [9]. We will consider different model abstraction
levels, starting with ideal operational amplifier (voltage controlled voltage sources), then
using approximated real OPAMP models, and finally introducing transistor circuits with
models of organic transistors [6].

The next sections introduce the analog artificial neural network architecture and its
electronic circuits with a short discussion of limitations. A short introduction in the digital
twin ANN is given with modifications necessary for the digital.analog transformation
process. An experimental section follows which applies the proposed transformation pro-
cess to the IRIS benchmark dataset. Finally, the results are discussed and summarizing the
lessons learned.

2. Analog Neural Networks
With respect to analog computing, we have to distinguish and consider:

e  Different transistor technologies, e.g., Bipolar, JFET, OFET/OTFT, OECT;

e  Operational amplifier (OPAMP) circuits with a minimal number of components
(transistors);

e Non-linear transfer functions, e.g., logistic regression (sigmoid) or hyperbolic tan-
gents, and their implementation with a minimal number of components;

e  Transfer functions and characteristic curves of OPAMP/sigmoid circuits

e A composed neuron (perceptron) circuit;

e Afull ANN.

We will start for sake of simplicity with traditional bipolar transistor circuits. The
minimal number of transistors for an OPAMP and the sigmoid function is three without
compromising usability, easy design procedure, and stability.

The circuit for a three-transistor OPAMP is shown in Figure 1 posing a nearly linear
transfer curve (with hard clipping), and a similar circuit for the smooth clipping non-lin-
ear sigmoid function implementation in Figure 2. Both circuits base on a differential NPN
transistor pair, followed by an current and voltage amplifying PNP transistor or a current
amplifying NPN transistor, respectively. To achieve an output voltage range of nearly
[-10 V,10 V], the power supply of the OPAMP3 circuit is set to [-10 V,15 V].
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Figure 1. OPAMPS3 circuit (three transistor operational amplifier) using commonly used NPN and
PNP bipolar transistors.
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Figure 2. SIGMOID3 circuit (three transistors) implementing the sigmoid function (output range 0—
3 V) using commonly used NPN bipolar transistors. The input resistor determines the k factor (sen-
sitivity or x-range scaling).

The sigmoid three-transistor circuit has different x- and y-scaling compared with the
mathematical function, but conforms with high accuracy to the scaled mathematical func-
tion, as shown in Figure 3. The x-scaling can be set by the input resistor multiplication
factor k. The y-scale is always approximately in the value range [0.05 V,2.9 V]. The SIG-
MOID3 circuit needs a slightly odd power supply [-1 V,3.7 V].
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Figure 3. Plot of analog SIGMOID?3 (y) output and mathematical (sig) function with k = 50, sigmoid
x-scaling = 0.7 and y-scaling = 2.9.
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Having defined the elementary cells OPAMP3 and SIGMOID3 of a neural network
we can compose neurons (one perceptron), layers of neurons, and entire networks. An
ANN is described by the layer-network structure and parameters (weights, bias). Weights
and bias values can be positive or negative. In principle, a common difference amplifier
can be used. But we will have commonly more than one negative and positive input, mak-
ing the parametrization of such circuits difficult (negative and positive gain can not be
indecently controlled). Therefore, we split the input path of a neuron into two paths, one
for negative weights and negative bias (if any), and one for positive weights and bias (if
any), finally merged by a unity gain difference amplifier. The entire architecture of a neu-
ron is shown in Figure 4.
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Figure 4. Single perceptron (neuron) circuit using one OPAMP3 circuit for all negative weights and
negative bias, one OPAMP3 circuit for positive weights and positive bias (mutual exclusive), one
difference OPAMP3 circuit combining both temporary outputs, and finally applying the sigmoid
function.

Due to the current-controlled current-source model of a bipolar transistor and cur-
rent flows from base to emitter/collector the gain of such a simplified OPAMP will be
lower as compared with the gain of a mathematical ideal OPAMP. This gain mismatch
(representing the weight of a neuron) requires a correction of the input resistor with a
function depending on the original computed input resistor i value in relation to the feed-
back resistor r:

G=GO-F(rf,ri)

F(r;.5)=[06,0.9] M

Additionally, there is a significant output offset of such simplified OPAMP circuit
(up to 3 V), which must be compensated by a feeding a compensation current flow via a
resistor into the inverting input node. The offset voltage depends on the feedback resistor
value and the accumulative (parallel) resistor of all input resistors connected to the invert-
ing input node. The dependency is extended if the non-inverting input is not grounded
(as in the case of the difference amplifier, but fortunately having constant gain and resistor
networks).
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Assuming a fixed feedback resistor of an OPAMP 4, e.g., 100 k(), an input resistor of
the inverting OPAMP node is computed by:

Iy
=G rf’W (2)

An analog circuit is basically an undirected mesh graph of current nodes, i.e., an elec-
tronic circuit has no real dedicated input and output ports. A digital feed-forward neural
network, in contrast, is a directed graph of functional nodes. There are basically two ana-
log architectures which must be distinguished by a digital-to-analog transformation pro-
cess:

3. Transformation Methods

1.  Circuits with ideal OPAMPs and transfer functions (sigmoid), i.e., a theoretical and
mathematical model of a neuron, which can use original ANN models and training
methods and a direct digital-to-analog mapping model;

2. Circuits with non-ideal OPAMPs and transfer functions requiring modified models
and training algorithms and an advanced digital-to-analog mapping model.

The first approach can be sub-divided into unconstrained ideal OPAMP and nearly-
ideal but constrained real OPAMPS. An ideal OPAMP is characterized by an infinite open
loop gain and infinite input and output value ranges. A real OPAMP has a finite high open
loop gain (>100,000), but limited output value ranges, given by the supply voltages, e.g.,
[-10 V,10 V]. The digital-to-analog transformation of ideal OPAMP circuits is trivial and
not further considered in this work. The transformation of real OPAMP circuits or non-
ideal OPAMP circuits is a challenge.

The challenges are:

1. Limited open loop gain (50-100) creating a limit of the weights (<50);

Intermediate values can exceed the output range of OPAMPs and clipping occurs;

3. The input- and output-range of non-linear transfer functions (e.g., sigmoid) is differ-
ent from the mathematical version.

4.  Real OPAMP circuits pose non-linearity (distortion) and highly relevant output offset
voltages (A).

5. Composed circuits with bipolar transistors pose complex side effects and further de-
viation from ideal OPAMP circuits due to the current-controlled current-source op-
erational model of such transistors.

N

To reflect the limitations and deviation of reduced transistor circuits compared with
ideal OPAMP models, the neuron architecture in the digital model must be modified, as
shown in Figure 5. Additional clipping and scaling blocks are added to the weighted sum-
mation function and the non-linear sigmoid transfer function. Due to the limited open
loop gain of the considered OPAMP3 circuit, weight parameter clipping is added, too.

The ANN is trained with scaled and normalized data by using the digital modified
network model and commonly available training algorithms, e.g., ADAM, SGD, and so
on. The intermediate value and weight parameter clipping introduces distortion in the
training process, but results commonly still in a satisfying model parameter optimization
and prediction error minimization. We assume a 1:1 digital-analog value mapping, i.e., a
digital (mathematical) value 1 is corresponding to a voltage of 1 V.

The clipping parameters and the x-scaling of the transfer functions must be chosen
carefully. In model architecture (a) even if there is an output clipping comparable to the
electronic circuit behavior, there can be intermediate value overflows in one or both
weight amplification branches. Higher mathematical values are not an issue for digital
computations, but with a 1:1 digital-analog mapping the absolute limits are given by the
power suppiily voltages of the transistor circuits.
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Figure 5. Modified digital neuron architectures with clipping and scaling (a) Simplified (b) With
separate negative and positive weight paths.

Therefore, the non-linear sigmoid function should be highly sensitive (i.e., low k val-
ues and high x-scaling). But deviations of analog circuits like offset voltages can shift the
transfer curve to their 0/1 boundaries resulting in saturated nodes not present in the digi-
tal model. A suitable compromise must be found on an iterative base.

The analog sigmoid function has a fixed output value range of about [0 V,3 V]. To
reduce the risk of intermediate network values higher than the clipping range, the digital
model is trained with a sigmoid value range [0,1], finally reducing all weights connected
to the output of a sigmoid function by a facto of three.

We used the JavaScript ConvNet]S software framework ([11], consisting of one file)
to apply our modifications. ConvNetJS provides advanced trainers and a broad range of
network architectures, but is still very compact and easy to maintain. The main modifica-
tion was the replacement of a commonly used practice to express the gradient function g
(of the transfer function f) as a function of the original transfer function, e.g., in the case of
the sigmoid function y = sigmoid(x) this is y(y — 1), i.e., computing the gradients from the
output values y. Instead, we modified the gradient computation by computing the gradi-
ent as a function of the input x. Finally, we added weight (filter) and output clipping.

The analog circuit is directly synthesized from the trained digital model. The synthe-
sizer aanngen has to perform:

e  (spice) net-list generation,

e  rescaling,

e  resistor computation from weight and bias parameters under amplification correc-
tion and connecting them to the appropriate sub-circuits (OPAMP3 OPN/OPP sub-
circuits for negative and positive weights/bias, respectively),

e adding and connecting sigmoid analog sub-circuits,
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e adding offset correction resistors based on computed circuit components.

The layer structure, weight and bias parameters from the trained digital model is
exported in JSON format and processed by the synthesizer program. Currently, the syn-
thesizer creates a ngspice net-list with simulation control statements testing the analog
circuit with test data.

4. Example: Benchmark IRIS Dataset Classification

An ANN with a layer structure of [4,3,3] neurons and scaled sigmoid transfer func-
tions were trained with the benchmark IRIS data set consisting of 151 data instances. Be-
cause this study is only a proof of concept and comparison of a digital and an analog
circuit model, training and test were performed with the entire data set.

The input vector x consists of four physical parameters (length, width, petal length
and width), which are normalized to the range [0,1] independently, finally correlating to
the analog voltage ranges [0 V,1 V]. The three species classes are one-hot encoded (y).
There is no soft-max layer at the output of the ANN model due to a lack of analog circuits
implementing an interconnected multi-node function accurately. The first input layer is
not present in the analog circuit (it is a pass-through layer).

The training was performed with the ADAM optimize, a = 0.02, y = 0.5, and a batch
size of 5. The filter clipping was set to 5, the output scaling (of the summation function)
was set to [-10,10]. A typical model parameter set achieved after 10,000 single training
iterations (by selecting training instances randomly) is shown in Figure 6. The classifica-
tion results of the (clipped) digital model compared with the results from analog circuit
are shown in Figure 7. The circuit was simulated by using ngspice with altered settings of
the input vector x.

The results shows that the transformation process from a digital to an analog model
succeeded. The average classification error increased (from 3% to 10%), but the overall
accuracy of the analog model is still good and comparable to the digital model. Due to the
limitations of the used simple and minimalistic circuits the results are better than ex-
pected. Offsets and gains deviations were not fully compensated in the analog model.

====== Weights layer 1 ======
[4.77,-2.39,4.10,0.66]
[0.74,1.47,-5.00,-5.00]
[-4.94,-1.72,-4.52,-4.29]
====== Weights layer 2 ======
[-4.85,4.55,-1.28]
[4.53,4.36,-3.90]

[1.89,-4.34,-3.33]
====== Bias layer 1 ======
[-1.36,5.34,-5.03]
====== Bias layer 2 ======

[-2.22,-6.71,0.29

Figure 6. Parameters of the digital IRIS classification model.
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FP [4,0,0] (4) FP [15,0,0] (15)
FN [0,0,4] (4) FN : [0,0,15] (15)
Unigque [C,A,B] Unique [C,A,B]
Error [0.00,0.00,0.08] (0.03) Error [0.00,0.00,0.30] (0.10)
Accuracy [1.00,1.00,0.92] (0.97) Accuracy [1.00,1.00,0.70] (0.90)
Precision [0.93,1.00,1.00] (0.97) Precision [0.77,1.00,1.00] (0.90)
Recall [1.00,1.00,0.92] (0.97) Recall [1.00,1.00,0.70] (0.90)
F1 Score [0.96,1.00,0.96] (0.97) Fl1 Score [0.87,1.00,0.82] (0.90)

Digital Model

Analog Model

Figure 7. Comparison of prediction results of the (modified and clipped) digital and the analog cir-
cuit model (Classes: A = setosa, B = versicolor, C = virginica).

5. Discussion

Due to the non-ideal analog circuit behavior compared with mathematical ideal op-
erational amplifiers there is an increasing accumulative error with an increased output
deviation and prediction errors, finally reducing the safety margin in classification. The
non-ideal behavior bases on:

1. Output offset of transistor circuits (OPAMP3) and offset correction coefficient base
on resistors networks of entire sub-circuit;

Lowered gain (which must be corrected) on inverting input and gain correction co-
efficient depends on resistor networks;

Limited gain due to low open gain factor;

Drift due temperature variation;

Transistor parameter variations (e.g., hfe);

Deviation of the SIGMOID3 transfer curve from the mathematical (scaled) sigmoid
function.

The y-scaling of the sigmoid is fixed, but the x-scaling can be freely chosen. A small
x-scaling decreases the output values of the summation circuit, but increase the sensitivity
to offset errors. A larger x-scaling results in the opposite relationship.

Offsets and gains deviations were not fully compensated in the analog model using
approximated and simplified calculation models derived from simulation, but the analog
model is still usable. But with an increasing number of layers (and neurons per layer), the
value errors accumulates and can lower the model accuracy until uselessness.

oUW

6. From Silicon to Organic Printed Electronics

The future goal of this work is to transform and implement digital computation in
analog organic printed electronics. We can distinguish different organic transistor tech-
nologies:
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2. Organic Electrochemical Transistors (OECT) [10]

We started with silicon bipolar transistors to show the principle possibility to trans-
form digital to analog models. We were able to create neural circuits sufficiently close to
the digital model behavior with a minimal number of transistors. The next step is the re-
placement of BJT transistors with voltage-controlled JFET transistors and finally with
OFET and OECT transistors. But some selected IV curve characteristics show the next sig-
nificant challenge. The JFTE and BCT curves are comparable with respect to steepness
(gain) and JFET circuits are well understood. The OFET curve [6] shows a totally different
behavior with respect to steepness and scale. In [10] the authors presented OECT transis-
tors with a much more promising behavior maybe suitable to create OPAMP3 and SIG-
MOID3 circuits.
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Figure 8. Simulated transistor IV curve characteristics (Vce = Vbs =10 V) for different transistor tech-
nologies: (a) Silicon NPN-BJT (b) Silicon N-JFET (c) p-OFET (spice model from [6]).

Assuming a typical size of organic printed transistors of about 200 x 200 pm [12], the
circuit presented in this work with 66 transistors and 75 resistors would cover an area of
about 2 x 2 mm, sufficiently small to be integrated in material-integrated sensor nodes
[13].

7. Conclusions

We could show that digital ANN models can be transformed into analog circuits with
minimal transistor counts. The presented analog transistor circuits OPAMP3 and SIG-
MOID3 are elementary cells and building blocks for neurons and neural networks. Each
sub-circuit requires only 3 transistors. We tested and evaluated out approach with the IRIS
benchmark dataset. We found that the digital model must be modified to reflect real circuit
clipping (saturation) and limited open loop gain (limiting teh maximal weights). The pre-
sented AANN example circuit consists of 16 OPAMP3 components and 6 SIGMOID3 com-
ponents, in total 66 transistors and 75 resistors. Although, the average classification error
increased from 3 to 10%, the overall model accuracy is preserved.

To conclude: The digital-to-analog transformation of ANN is possible, but the imper-
fections and correction of the simplified transistor circuits are limiting factors, especially
for larger networks. We propose to use surrogate ML models of the sub-circuits for differ-
ent parameter settings and IO characteristics derived and trained from simulation and
integrated in the digital model training. The seems inevitable if OFET and OECT transistor
technologies with much higher degree of imperfections ares used.
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Figure A1. AANN circuit (for IRIS dataset classification).
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V2 VEE 0
R1 1 VEE
R2 VSS 2

R3 VSS 5

dc {vp}
dec {VN}
2200
18000

18000

R4 IN 4 {K*1000}

R5 4 0 1000

QL 2 4 1
Q2 501
*CBE

2N3904
2N39504

Icrating=200m)
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Re 5 6 10000

Q3 VSS 6 QUT 2N3904

R7 OUT VEE 10000

.ends

VREF1 REF 0 1

VREF10 REF10 0 10

* ¥ Input Vector (assuming normalized voltages 0-1V
VX0 INXO 0 DC 0

VX1 INX1 0 DC 0

VX2 INX2 0 DC 0

VX3 INX3 0 DC 0

* Layer 1

* Layer 1 Node 0

RLINOWO INX0 OPL1INOPT 17702

RLINOW1 INX1 OPLINONT 35445

RLINOW2 INX2 OPLINOPT 20566

RLINOW3 INX3 OPLINOPT 128439

RLINOB REF OPLINONT 62430

RLINOOFN REF10 OPL1NONT 330226

* OPAMP W- L1NO

RLINOFN OPLINONOUT OPLINONT 100000

* QPAMP W-: IN+ IN- OUT

XL1NOOPN 0 OPLINONT OPLI1INONOUT OPAMP3 VP=15 VN=-10
RL1INOOFP REF10 OPL1INOPT 318610

* OPAMP W+ L1NO

RLINOFP OPLINOPOUT OPLINOPT 100000

* OPAMP W+: IN+ IN- OUT

XL1INOQOPP 0 OPLINOPT OPLI1INOPOUT OPAMP3 VP=15 VN=-10
* DIFF (-,+)

RLINOOP OPLINONOUT OPL1NODP 100000
RLINOON OPLINOPOUT OPLINODN 75000
RLINOOF OPLINODOUT OPL1INODN 100000
RLINOOG OPL1INODP 0 100000

RLINOOFD REF10 OPL1NODN 2800000

* OPAMP DIFF (W- - W+): IN+ IN- OUT
XL1NOOPD OPLINODP OPL1INODN OPLINODOUT OPAMP3 VP=15 VN=-10
* SIGMOID

XL1INOOSG OPLINODOUT OUTL1INO SIGMOID K=10
* Layer 1 Node 1

RLIN1IWO INX0 OPLIN1PT 115552

RLIN1IW1 INX1 OPL1IN1PT 57719

RLIN1IWZ2 INX2 OPLININT 16777
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RLIN1IW3 INX3 OPLIN1INT 16887

RLIN1B REF OPLIN1PT 15704

RLINIOFN REF10 OPLININT 318803

* OPAMP W- LIN1

RLIN1IFN OPLININOUT OPLININT 100000

* QPAMP W-: IN+ IN- OUT

XLIN1OPN 0 OPLININT OPLININOUT OPAMP3 VP=15 VN=-10
RLIN1IOFP REF10 OPLIN1PT 325708

* OPAMP W+ LI1IN1

RLIN1FP OPLIN1POUT OPLIN1PT 100000

* QPAMP W+: IN+ IN- OUT

XL1IN1OPP 0 OPLIN1PT CPL1N1POUT OPAMP3 VP=15 VN=-10
* DIFF (-, +)

RLIN1OP OPLININOUT OPL1IN1DP 100000
RLIN1ION OPLIN1POUT OPL1N1DN 75000
RLIN1IOF OPLIN1DOUT OPL1IN1DN 100000
RL1IN1OG OPL1N1DP 0 100000

RLIN1IOFD REF10 OPLIN1DN 2800000

* QPAMP DIFF(W- - W+): IN+ IN- OUT
XL1N1OPD OPLIN1DP OPL1IN1DN OPLI1N1DOUT OPAMP3 VP=15 VN=-10
* SIGMOID

XLIN10SG OPL1IN1DOUT OUTLIN1 SIGMOID K=10
* Layer 1 Node 2

RLIN2WQ INX0 OPLINZNT 17063

RLIN2W1 INX1 OPLIN2NT 49262

RLIN2W2 INX2 OPLIN2NT 18642

RLIN2W3 INX3 OPLINZNT 19643

RL1N2B REF OPLI1N2NT 16690

RLIN20OFN REF10 OPLIN2NT 308362

* QPAMP W- LI1IN2

RLINZ2FN OPL1IN2NOUT OPLIN2ZNT 100000

* OPAMP W-: IN+ IN- OUT

XLIN20PN 0 OPLIN2NT COPL1N2NOUT OPAMP3 VP=15 VN=-10
* NO D-AMP needed

RLIN2OF OPLIN2NOUT OPL1N2DOUT O

* SIGMOID

XL1IN20SG OPLIN2DOUT QUTLINZ2 SIGMOID K=10
* Layer 2

* Layer 2 Node 0

RL2NOWQ OUTLINO OPL2NONT 51098

RL2NOW1 OUTL1IN1 OPL2NOPT 54534

RL2NOW2 OUTLI1IN2 OPL2NONT 194217
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RL2NOB REF OPL2NONT 38136

RL2NQOFN REF10 OPL2NONT 327673

* OPAMP W- L2NO

RLZNOFN OPL2ZNONCUT OPL2NONT 100000

* OPAMP W-: IN+ IN- OUT

XL2NOOPN 0 OPLZNONT OPLZNONOUT OPAMP3 VP=15 VN=-10
RL2NQOFP REF10 OPL2NOPT 332627

* OPAMP W+ L2NO

RL2NOFP OPL2NOPOUT OPL2NOPT 100000

* OPAMP W+: IN+ IN- OUT

XL2NOOPP 0 OPL2ZNOPT OPLZNOPOUT OPAMP3 VP=15 VN=-10
* DIFF(-,+)

RL2ZNOOP OPL2NONOUT OPL2NODP 100000

RL2NOON OPLZNOPOUT OPL2NODN 75000

RL2NOOF OPL2NODOUT OPL2NODN 100000

RL2NQOOG OPLZNODP 0 100000

RL2ZNOOFD REF10 OPL2NODN 2800000

* OPAMP DIFF(W- - W+): IN+ IN- OUT

XL2NOOPD OPL2NODP OPLZNODN OPL2NODOUT OPAMP3 VP=15 VN=-10
* SIGMOID

XL2N0OOSG OPL2NODOUT OUTL2NO SIGMOID K=10

* Layer 2 Node 1

RL2N1WO OUTLINO OPL2N1PT 54714

RL2N1W1 OUTLIN1 OPL2ZN1PT 56856

RL2N1W2 OUTL1IN2 OPL2N1INT 63626

RLZN1B REF OPL2ZN1NT 12432

RL2N1OFN REF10 OPL2NINT 325812

* OPAMP W- L2N1

RL2N1FN OPL2N1INQOUT OPLZNINT 100000

* OPAMP W-: IN+ IN- OUT

XL2N1OPN 0 OPL2NINT OPLZNINOUT OPAMP3 VP=15 VN=-10
RL2ZN1OFP REF10 OPL2N1PT 330074

* OPAMP W+ L2N1

RLZN1FP OPLZN1POCUT OPL2N1PT 100000

* OPAMP W+: IN+ IN- OUT

XL2N1OPP 0 OPL2N1PT OPLZN1POUT OPAMP3 VP=15 VN=-10
* DIFF(-,+)

RL2N1OP OPL2N1INOUT OPL2ZN1DP 100000

RL2N1ON OPLZN1POUT OPL2N1DN 75000

RL2N1OF OPL2N1DOUT OPL2N1DN 100000

RL2N10OG OPLZN1DP 0 100000

RLZN1OFD REF10 OPL2N1DN 2800000
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* OPAMP DIFF (W- - W+): IN+ IN- OUT

XL2ZN10OPD OPL2N1DP OPL2N1DN OPL2N1DOUT OPAMP3 VP=15 VN=-10
* SIGMOID

XL2N10SG OPL2N1DOUT OUTL2N1 SIGMCID K=10

* Layer 2 Node 2

RL2N2W0O OUTLINO OPLZNZPT 131942

RL2N2W1 OUTLIN1 OPLZ2N2NT 57099

RLZN2W2 OUTL1NZ2 OPLZNZNT 74585

RL2N2B REF OPL2N2PT 296807

RL2N20OFN REF10 OPL2N2NT 331935

* OPAMP W- LZ2N2

RL2N2FN OPL2N2NOUT OPL2N2NT 100000

* OPAMP W-: IN+ IN- OUT

XL2N20PN 0 OPL2N2NT OPL2N2ZNOUT OPAMP3 VP=15 VN=-10
RL2N20OFP REF10 OPL2N2PT 333002

* OPAMP W+ LZ2N2

RL2NZFP OPL2N2POUT OPL2N2ZPT 100000

* OPAMP W+: IN+ IN- OUT

XLZN20PP 0 OPLZNZ2PT OPLZNZPOUT OPAMP3 VP=15 VN=-10
* DIFF(-,+)

RL2N20OP OPL2N2NOUT OPL2N2DP 100000

RL2N20ON OPL2N2POUT OPL2N2DN 75000

RL2N20OF OPL2N2DOUT OPL2N2DN 100000

RL2N20G OPL2N2DP 0 100000

RLZN20OFD REF10 OPL2N2DN 2800000

* OPAMP DIFF(W- - W+): IN+ IN- OUT

XL2N20PD OPL2N2DP OPL2N2DN OPL2N2DOUT OPAMP3 VP=15 VN=-10
* SIGMOID

XL2N2058G OPL2ZN2DOUT OUTL2ZNZ SIGMOID K=10

Figure A2. (ng)spice model of the AANN circuit synthesized from a digital trained model.
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