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Abstract: This paper presents a comprehensive study on enhancing Industrial Internet of Things
(IIoT) and Industrial Metaverse Applications through the integration of On-Device Automatic Speech
Recognition (ASR) using Microsoft HoloLens 2 smart glasses. Specifically, this paper focuses on
the utilization of the HoloLens 2’s microphone array and sound capture APIs to benchmark the
performance and accuracy of on-device ASR models. The evaluation of these models includes
metrics such as Character Error Rate (CER), Word Error Rate (WER) and latency. In addition, this
paper explores various optimization techniques, including quantization tools and model refinement
strategies, aimed at minimizing latency while maintaining high accuracy. The study also emphasizes
the importance of supporting low-resource languages, using Galician—a language spoken by less
than 3 million people worldwide—as a case study. By benchmarking different variations of a
Wav2Vec2.0-based ASR model fine-tuned for Galician, the most effective models are identified, as
well as their optimal runtime configurations. This work underscores the critical role of low-latency
on-device ASR systems in real-time IIoT and Industrial Metaverse applications, highlighting how
these technologies can enhance operational efficiency, privacy and user experience in industrial
environments. The findings demonstrate the significant potential of the on-device ASR system
developed to enhance voice interactions in emerging Metaverse applications, specially for low-
resource languages.

Keywords: Automatic Speech Recognition; ASR; Internet of Things; IIoT; Industrial Metaverse;
Microsoft HoloLens2; Extended Reality

1. Introduction

The emergence of Extended Reality (XR) technologies has revolutionized various
sectors by integrating devices like the Microsoft HoloLens 2 smart glasses into professional
environments, ranging from education to industrial applications [1–4]. These advancements
are crucial for the development of the Industrial Metaverse [5], a collective virtual space
where users interact via XR devices, combining digital twins and Industrial Internet of
Things (IIoT) devices to optimize industrial processes. This paper presents results from
a research project with Navantia, a Spanish naval company specialized in designing and
constructing military and civilian ships. The objective of the work is to develop an Industrial
Metaverse application utilizing XR technology to enhance the speed and efficiency of
operators during the placement and installation of electrical boilermaking components
during the shipbuilding process. In order to enhance the user experience of the Industrial
Metaverse application, the optimization of on-device Automated Speech Recognition (ASR)
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is essential [6]. The developed application makes use of Microsoft HoloLens 2 smart
glasses, which embed a sophisticated microphone array that facilitates voice interactions,
making the optimization of audio capture crucial for achieving a clear communication
and an effective command execution [7]. Specifically, this paper focuses on leveraging
the HoloLens 2 capabilities to deploy a fine-tuned Wav2Vec2.0-based ASR model directly
on the device [8]. Thus, the proposed approach is aimed at minimizing latency while
maintaining privacy (the ASR model is executed locally on the smart glasses, without
communicating with external servers), which is key for performing real-time interactions
in the Industrial Metaverse application developed for Navantia. At the same time, by
focusing on a low-resource language like Galician, spoken by less than 3 million people [9],
this paper highlights both the lack and importance of ASR systems for minority languages
in IIoT and Industrial Metaverse applications.

2. State of the Art

ASR systems have become an essential component in various applications within the
domains of IoT and IIoT. As it can be seen in Figure 1, these systems facilitate voice-based
interaction, which is especially useful for environments where manual control is impractical.
For instance, ASR has been integrated into smart home devices and industrial settings to
improve user interaction with machines, enabling voice-based commands and control [10].
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Figure 1. Representation of the integration of the on-device ASR system in the Industrial Metaverse
as well as the interaction with IoT and IIoT devices.

Recent advancements have also extended ASR technologies into the realm of the
Metaverse with the integration of ASR in virtual environments, particularly in collaborative
workspaces which allows users to interact seamlessly with digital objects and avatars
through voice commands. However, the development of ASR for the Metaverse faces
challenges like real-time processing, speech recognition in noisy environments, and the
need for high accuracy in voice command recognition [11].

Developing ASR systems for low-resource languages such as Galician poses several
challenges due to the scarcity of annotated speech data. Traditional ASR models, which
typically require large datasets, often struggle with languages that lack sufficient linguistic
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resources. Recent research has focused on developing ASR models based on multilingual
frameworks that can be fine-tuned with smaller datasets, enabling the deployment of ASR
systems for low-resource languages [8].

3. Methodology
3.1. HoloLens 2 Microphone Array and APIs

As it can be seen in Figure 2, the Microsoft HoloLens 2 smart glasses feature an array of
five microphones designed for optimal audio capture. Three are located on top of the visor,
while another two are inside, aimed towards the user’s mouth, thus facilitating effective
voice isolation and background noise cancellation. Three main Application Programming
Interfaces (APIs) are currently available for capturing sound with HoloLens 2: Unity
API [12], MRTK’s MicStreamSelector.dll [13] and Windows Runtime (WinRT) API [14].
Each API provides different levels of control and processing capabilities.

Figure 2. Microsoft HoloLens 2 microphone array.

3.2. Dataset and Benchmarking Procedure

The dataset used for benchmarking in this paper comprises 60 clips, with 10 clips
representing a male voice and 10 clips representing a female voice recorded for each of
the three available sound capture APIs. Each clip represents a single voice command in
Galician of up to five seconds and is based on phrases related to IIoT, sensor-based and
voice-controlled applications (e.g., ‘Apaga a luz’, which means ‘Turn off the lights’).

The benchmarking process uses ONNX Runtime’s CPU Execution Provider (EP) [15]
and iterates over the 60 clips and over every variation of the ASR model, trying every
possible combination of runtime parameters in the CPU EP to achieve the best results for
that single clip. Every inference result for each combination is stored for further analysis.
The benchmarking process is single-pass, which means that the model is not warmed up
before the benchmarking process, so it has not seen any of the data it will be fed, and
will only see each sample from the dataset once during the benchmarking process. This
is performed in order to simulate a real-world scenario where the model is loaded and
executed without any prior knowledge of the input data.



Eng. Proc. 2024, 6, 0 4 of 8

3.3. ASR Model and Optimization Techniques

The base ASR model used in this paper is a Wav2Vec2.0-based model fine-tuned for
Galician. This model is based on the Wav2Vec 2.0 architecture which is a state-of-the-art
ASR model that uses a self-supervised learning approach to learn speech representations
from raw audio data [16]. Additionally, a larger version of the model was also used in the
benchmarking process.

In addition to the base and large models, this paper also tests a distilled version.
Distillation is a technique that consists of training a smaller model to mimic the behavior
of a larger model. The distilled model strives to maintain the accuracy of the base model
while reducing its size and computational requirements.

Quantization is another optimization technique used in this paper. Quantization re-
duces the precision of a model’s weights and activations, thus reducing the model’s size and
computational requirements. In this paper, two quantization tools are used: Optimum [17]
and PyTorch [18]. PyTorch is one of the most popular deep learning frameworks, and
its quantization tool is widely used for quantizing models, however it is not optimized
for hardware-aware quantization. Optimum, on the other hand, is a quantization tool
developed by Hugging Face that takes into account the target hardware when quantizing
the model, thus exploiting the hardware capabilities to achieve better performance.

3.4. Evaluation Metrics: CER, WER and Latency

To evaluate the performance of the developed on-device ASR system, several metrics
were considered: Character Error Rate (CER), Word Error Rate (WER) and latency.

CER and WER metrics measure the percentage of units (characters for CER, words for
WER) that are incorrect in a transcribed output as follows:

Error Rate =
Substitutions + Insertions + Deletions

Total units in reference
(1)

Since in an IIoT or Industrial Metaverse ASR-based application the developed system
has to deal with short voice commands, the use of CER is commonly prioritized over WER.
This is due to the fact that in very short commands, WER can be misleading, as a single
character error can significantly affect the WER value, while the CER value remains more
stable and representative of the actual accuracy of the ASR system.

Latency is a challenging aspect to address when performing the processing and
transcription on a computationally-constrained battery-powered device. Achieving low
latencies in an on-device ASR system requires precise tweaking, optimization, and efficient
resource utilization.

In Metaverse and IIoT applications, low latency is crucial for providing a seamless
user experience, as it allows for real-time interactions both with the application and with
the environment. In the context of ASR, low latency is essential for providing immediate
feedback, ensuring that the system feels responsive to the user.

Latency measured in this paper is the time taken by the ASR system to process a single
5 s voice command and return the transcription. As represented by Figure 3, latency is
measured from the moment the audio is encoded into the input tensor until the moment
the Connectionist Temporal Classification (CTC) decoding process is completed and the
transcription is returned, allowing the system to execute the desired command.



Eng. Proc. 2024, 6, 0 5 of 8

Inference: 2900 msInput tensor filled

CTC Decoding: 80 ms

Total Latency: 2980 ms

Transcription decoded

Figure 3. Latency breakdown of the on-device ASR system.

4. Benchmarking and Results

As it was mentioned in Section 3.2, the benchmarking process involved iterating over
60 clips, each representing a unique voice command that allows for interacting with an IIoT
system through an Industrial Metaverse application for Microsoft HoloLens 2. For each
clip, every possible combination of runtime parameters for ONNX Runtime’s CPU EP were
tested. This comprehensive approach allowed us to identify the optimal runtime settings
for each ASR model variation, depending on whether the executed task required higher
accuracy, lower latency or a balance between both.

Figure 4 shows the results of the benchmarking process, where each point represents a
specific ASR model variation with a specific set of runtime parameters. The points have
been clustered based on the used quantization tool and on whether the model was distilled
or not (Base vs Distilled).
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Figure 4. CER vs. Latency for different ASR model variations, clustered by quantization tool, model
base or distillation process.

As it can be observed, non-quantized wav2vec2-base-gl based models provide a rea-
sonable trade-off between accuracy and latency, having a mean CER of 6.8 % and a mean
latency of 4.5 s when using the optimal runtime parameters. Regarding the wav2vec2-large-
gl based models, they incur in a high latency (of more than 20 s) and do not deliver a
significant improvement in CER. Lastly, the wav2vec2-distilled-gl based models obtain the
lowest latencies, but at the cost of a high CER, which averages 19.1 %.

On the other hand, the models quantized dynamically using Optimum for ARM64
provide a significant improvement in latency when running them under optimal runtime
parameters, with latencies as low as 2.98 s, which is approximately a 40 % improvement
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over the base models. Moreover, the lowest CER obtained by these models under optimal
runtime parameters was 6.46 %, thus slightly improving the base models. Lastly, the models
quantized using PyTorch tend to have a lower latency in comparison to the base model,
averaging a 5 % decrease in latency, but at the cost of increasing CER by approximately 6 %.

Table 1 shows a subset of the best performing ASR model variations, runtime param-
eters and quantization mechanisms for minimizing CER. The table shows that for the
wav2vec2-base-gl model with the lowest CER, the optimal runtime parameters consist in
setting Graph Optimization to Disabled or Basic, and Execution Mode to Sequential. This is
because higher levels of graph optimization can introduce less precise computations in
certain nodes. Moreover, in this specific case, the ASR model’s computational graph does
not benefit significantly from parallel execution due to its limited branching structure.

Table 1. Optimal Combinations of ASR Models, Runtime Parameters and Quantization Mechanisms
for Minimizing CER.

Model

Quantization Runtime Parameters

CER (%) Latency (s)
Tool Type Data Type Sym.

Act.
Per

Channel
Graph

Optimization
Execution

Mode

wav2vec2-base-gl Optimum Dynamic QUInt8/QInt8 No No Disabled Sequential 6.46 3.78
wav2vec2-base-gl Optimum Dynamic QUInt8/QInt8 No No Basic Sequential 6.66 3.61
wav2vec2-base-gl Optimum Dynamic QUInt8/QInt8 Yes No Basic Sequential 6.66 3.65
wav2vec2-base-gl Optimum Dynamic QUInt8/QInt8 Yes Yes Extended Sequential 6.67 2.98
wav2vec2-base-gl Optimum Dynamic QUInt8/QInt8 Yes Yes Disabled Sequential 6.70 3.80
wav2vec2-base-gl – – – – – Disabled Sequential 6.76 4.47
wav2vec2-base-gl PyTorch Dynamic QInt8 No No Basic Sequential 7.19 4.24
wav2vec2-large-gl Optimum Dynamic QUInt8/QInt8 Yes Yes Disabled Sequential 7.66 7.72
wav2vec2-large-gl PyTorch Dynamic QInt8 No No All Sequential 8.76 9.56

wav2vec2-distilled-gl Optimum Dynamic QUInt8/QInt8 Yes Yes All Sequential 18.56 2.42
wav2vec2-distilled-gl – – – – – All Sequential 19.14 2.61

Regarding quantization mechanisms, the best-performing models in terms of CER are
quantized dynamically using Optimum with the ARM64 preset and with Data Type set to
QUInt8/QInt8, which means that activations are quantized using 8-bit unsigned integers,
while weights use 8-bit signed integers. Weights are always quantized symmetrically in
order to ease the computation of dot products.

Finally, Table 2 presents a subset of the best-performing ASR model variations, runtime
parameters and quantization mechanisms for minimizing latency. The table shows that
distilled models provide the lowest latency, but their CER is significantly higher than
the one obtained by base models and, therefore, they are not recommended for scenarios
where accuracy is important. In addition, Table 2 also indicates that base models quantized
dynamically using Optimum for ARM64 provide the best trade-off between CER and
latency, with latencies as low as 2.98 s and CERs of only 6.67 %. It can also be observed in
this case that higher levels of graph optimization usually lead to lower latencies without
impacting the CER significantly.

Table 2. Optimal Combinations of ASR Models, Runtime Parameters, and Quantization Mechanisms
for Minimizing Latency.

Model

Quantization Runtime Parameters

CER (%) Latency (s)
Tool Type Data Type Sym.

Act.
Per

Channel
Graph

Optimization
Execution

Mode

wav2vec2-distilled-gl Optimum Dynamic QUInt8/QInt8 Yes Yes All Sequential 18.57 2.42
wav2vec2-distilled-gl – – – – All Sequential 19.15 2.61

wav2vec2-base-gl Optimum Dynamic QUInt8/QInt8 Yes No Extended Sequential 7.07 2.98
wav2vec2-base-gl Optimum Dynamic QUInt8/QInt8 Yes Yes Extended Sequential 6.67 2.98
wav2vec2-base-gl Optimum Dynamic QUInt8/QInt8 No No Extended Sequential 6.92 3.07
wav2vec2-base-gl PyTorch Dynamic QInt8 No No Extended Sequential 7.38 3.61
wav2vec2-base-gl – – – – – Extended Sequential 6.82 3.77
wav2vec2-base-gl – – – – – All Sequential 6.82 3.86
wav2vec2-large-gl Optimum Dynamic QUInt8/QInt8 Yes Yes Extended Sequential 8.13 6.61
wav2vec2-large-gl PyTorch Dynamic QInt8 No No All Sequential 8.76 9.56
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5. Conclusions

This paper analyzed the potential and viability of using on-device ASR models to
enhance future sensor-based IIoT and Industrial Metaverse applications. Different ASR
models for Galician, a low-resource language, were optimized to achieve low latency and
high accuracy, making them ideal for real-time voice-controlled applications on mobile
devices like Microsoft HoloLens 2 smart glasses.

The experiments showed that base models optimized for ARM64 provide an effec-
tive balance between latency and accuracy, achieving latencies as low as 2.98 s with a
CER of 6.67 %. However, while distilled models offer lower latency, they result in higher
error rates, making them unsuitable for scenarios where accuracy is crucial. This sug-
gests that well-optimized base models are the most suitable for real-time processing in
industrial environments.

Moreover, the implementation of ASR models for a minority language like Galician
demonstrates the feasibility of developing such speech recognition solutions for low-
resource languages. The results of this paper also highlight how on-device processing,
independent of external servers, enhances privacy and also enables voice controlled Meta-
verse applications in environments with limited or no Internet connectivity.
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IoT Internet of Things
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WER Word Error Rate
ONNX Open Neural Network Exchange
API Application Programming Interface
EP Execution Provider
CTC Connectionist Temporal Classification
QUInt8 Quantized Unsigned 8-bit Integer
QInt8 Quantized Signed 8-bit Integer
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