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Abstract: Defect detection in distributed motors within the IoED architecture is the focus of this 

research. The idea of the Distributed Internet of Things (DIoT) is used to build a cyber-physical 

system architecture. To improve sensitivity and accuracy, the approach uses Fast Fourier Transform 

(FFT) for signal processing and ANN for defect detection. When it comes to motor conditions, ANN 

can adapt to different situations and find complicated patterns, whereas FFT is good at extracting 

frequency characteristics. The experimental results confirm the system’s usefulness in various fail-

ure scenarios, highlighting its resilience and the capacity to detect faults in real-time. This enhances 

the predictability of manufacturing motor systems. 
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1. Introduction 

The distributed nature of Cyber-Physical Systems (CPS) makes them easily expand-

able and reconfigurable to accept more motors or other components. Scalability and flex-

ibility are further enhanced by this architecture. Industries such as transportation, indus-

trial manufacturing, and solar and wind power benefit greatly from this inherent scalabil-

ity because operating demands are always changing [1]. Furthermore, CPS excels in opti-

mizing energy efficiency and resource use through intelligent control and coordination 

components [2]. Using continuous information from sensor devices integrated into each 

motor unit, CPS automatically modifies operation-related parameters to enhance system 

performance, save operational costs, and boost efficiency [6]. Rate of acceleration, power 

consumption, and top speed are all examples of such metrics. 

By combining conventional electric motors together with the enhanced intelligence 

and connectivity provided by the Internet of Things (IoT), electrical drives have under-

gone significant change in terms of integration [3]. Examining how the Motor Current 

Signature Analysis (MCSA) method and real-time data transfer from IoT sensing sites can 

work together to enhance industrial condition monitoring and fault diagnosis is the focus 

of this study. The method aims to improve industrial system monitoring efficiency and 

dependability [4]. 

Smart manufacturing and progress in industrial automation are making distributed 

motor systems (DMS) popular in many industries. These include robots, energy, trans-

portation, and manufacturing. These motor systems are the backbone of modern manu-

facturing’s efficacy and efficiency [5]. Because these systems are more prone to mistakes 

and failures as they get larger and more complicated, they can cause downtime, inefficient 

operations, and even safety hazards. The complexity of many modern distributed motor 

systems makes it impossible to find problems with them using either simple condition 
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monitoring systems or manual inspections. Intelligent fault detection methods that are 

more advanced are required so that failures can be anticipated and mitigated. Integrating 

cyber-physical sensor networks with artificial intelligence (AI) could be a solution to this 

problem by making dispersed motor systems better at detecting defects. 

Recent years have seen widespread industry-wide disruption due to the advent of 

AI-powered computerized data analysis and decision-making. AI can analyze massive 

volumes of sensor data in real time, spot irregularities, and reliably forecast breakdowns 

in decentralized motor systems. This is especially useful for distributed motor systems, 

where a number of motors work in tandem but are often located in awkward or otherwise 

unattractive locations. AI can constantly monitor these systems for wear, misalignment, 

overheating, and other faults that could destroy them. AI fault detection improves system 

reliability, repair expenses, unexpected downtime, and electric motor life expectancy [6]. 

Artificial intelligence’s capability for flaw detection has been greatly improved by the 

emergence of CPS. Smart and dynamic networks for continuous control and monitoring 

are created by CPS by integrating actuators, sensing devices, and motors with computer 

systems [7]. In DMS, CPS is crucial because it lays the groundwork for real-time data col-

lecting and transmission. Real-time data collection, processing, and analysis using cyber-

physical sensor networks provides a complete picture of the motor system’s condition and 

efficiency. Because artificial intelligence algorithms may be deployed right to the data 

streams, they can identify patterns and abnormalities that conventional approaches might 

overlook, allowing for faster and more accurate defect identification. 

As a future-oriented approach to system management, predictive maintenance is 

made possible by combining AI with CPS. Rather than waiting for a problem to occur 

before performing maintenance, predictive maintenance can foresee possible problems 

and allow operators to take precautions. Improved distributed motor system efficiency is 

the result of shifting from responsive to proactive maintenance, which involves executing 

checks only when absolutely necessary and cuts down on interruptions [8]. In addition, 

downtime may be minimized and resources allocated efficiently with the help of AI-pow-

ered predictive maintenance, which improves repair scheduling. 

There are a number of obstacles that prevent AI-driven cyber-physical sensor net-

works from being effectively used for failure detection in distributed motor systems, de-

spite the fact that they show great potential. Managing the massive volumes of data gen-

erated by a multitude of sensors, which can amount to hundreds or even thousands, each 

continuously emitting streams of information, poses a significant difficulty [9]. A powerful 

computer architecture and sophisticated algorithms are required for the real-time pro-

cessing of this data in order to efficiently remove superfluous data while preserving cru-

cial insights. As an added precaution, it is critical to keep these systems secure and relia-

ble; otherwise, they could be vulnerable to cyberattacks or operational failures. 

Private and academic entities have studied and developed Wireless Sensor Networks 

(WSNs) for industrial machines [3]. A central computer handles data fusion and extraction 

in these solutions, which focus on data collection and signal transmission. To enhance 

data processing efficiency and energy conservation at sensor nodes, some techniques in-

clude problem identification at the point of data collection location [10]. Motor fault iden-

tification and status monitoring by Industrial Wireless Sensor Networks (IWSN) must 

consider industrial operations and motor characteristics [4]. Some industrial applications 

require high sample rates, fast data transmission, and data reliability, yet IWSNs have 

limited computational, wireless internet access, and lasting power. IWSN resource con-

straints make system needs challenging to balance. 

In order to better detect faults in distributed motor systems, this research aims to 

investigate how cyber-physical sensor networks driven by AI can do just that. This study 

intends to contribute to the growing pool of literature on intelligent defect detection by 

investigating the potential benefits and drawbacks of integrating AI with sensor networks. 

The following sections will explore the most recent developments in artificial intelligence 

(AI) and cyber-physical systems (CPS), the limitations of traditional fault detection 
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methods, and the benefits of integrating AI-powered solutions into DMS. By delving into 

the ways AI can revolutionize problem detection and maintenance procedures, this inves-

tigation will shed light on how to build industrial systems that are more resilient and ef-

ficient. The literature is lacking in several key areas: 

• Much study has focused on comparing healthy and malfunctioning motors to diag-

nose their condition and performance. However, distributed multi-motor systems, 

whose interconnected motors may send incorrect signals throughout the network, 

have not been studied. 

• Problems with analysis owing to non-linear interference from industrial noise signals 

and the fact that problem symptoms in power-line networks are similar across ma-

chines make fault detection difficult to implement in dispersed motor networks. 

• Few studies have examined how load fluctuations affect fault frequency component 

amplitudes under healthy and defective situations. 

The rest of the article is structured like this: The proposed framework is in Section 2. 

In Section 3, we offer the experimental results and accompanying remarks. In Section 4, 

we conclude the study and suggest directions for further research. 

2. Framework for Distributed Motor Network Signature Analysis and Fault  

Type Diagnosis 

A typical industrial multi-motor power-line network’s structural arrangement is ex-

amined to show how fault signals spread and can be identified along the main power bus. 

As signals travel through the network, their closeness influences how other motors re-

spond. The arrangement of various measurement sites used to track motor activity takes 

a number of aspects into account when connecting induction motors over a common sup-

ply bus. Connected motors, categorized bus bars, and a primary power bus make up the 

model. Multiple measurement sites are assumed in important points to monitor distinct 

motor behaviors inside a particular bus system. This allows us to measure the perfor-

mance of fault diagnostics by evaluating our findings at each point. 

The main objective of this research is to demonstrate how well fault signal detection 

at the node level may work by examining the corresponding spectrum. Important consid-

erations to consider while diagnosing power-line network issues include the background 

noise, fault signal propagation, numerous routes of interference from surrounding nodes, 

and the incidence of similar failures across different nodes. There must also be accurate 

fault localization in the power-line network. Figure 1 depicts the research framework used 

for fault diagnosis in this study, which is a distributed framework for multi-motor designs 

that incorporates Wireless Sensor Network (WSN) connectivity. 

Figure 1 presents the concept of distributed signature analysis, where electric current 

signals from multiple sensing points are observed to enhance fault diagnosis accuracy. By 

leveraging data from various points, this approach clarifies fault symptoms affected by 

network noise. It focuses on identifying faulty motors within the power-line network, an-

alyzing signal attenuation, and understanding fault signal propagation paths. Wireless 

Sensor Network (WSN) nodes play a key role in data collection, fault diagnosis, noise 

identification, and monitoring neighboring nodes, with alerts sent to the coordinator 

when faults are suspected. This framework offers a more reliable solution, especially 

when direct measurement methods are unavailable. 
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Figure 1. Distributed IoT fault diagnosis proposed framework. 

3. Experimental Test-Bed Setup and Results 

Experimental motor networks were created and tested by researchers at AUT’s SeNSe 

lab to show how fault signals can be transmitted throughout a power-line structure and 

to identify various types of faults. Two different-sized single-phase induction motors were 

connected to a primary power bus. A multi-motor network was replicated using a total of 

nine induction motors, which were spread among three sub-buses, as illustrated in Figure 

2. 

 

Figure 2. Multiple motor fault signature testbed. 

In following Figure 3, we can see the experimental configuration of the Arduino sys-

tem. It contains a current sensor that takes readings from the ground and sends them to 

the Arduino for processing. 

 

Figure 3. Arduino setup for wireless current monitoring. 

To demonstrate the theory and show how a fault signal can influence the properties 

of neighboring motors based on their distance from the source, a case study was 
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conducted, as shown in Figure 2. Two similarly sized motors (Motor 5 and Motor 9) from 

buses 2 and 3 were selected to observe the impact of faulty signals on other motors within 

the same or different buses. Additionally, a high-power Motor 1 was chosen to introduce 

a stronger faulty signal for better fault discrimination. Three sensing points were used to 

measure the fault signal strength at different locations within the motor network. Electric 

current spectra and amplitude values from all motors are examined in Figures 4 and 5. A 

failure signal for eccentricity occurred at the same harmonic point, as shown in Figure 5, 

although the magnitude of the signal varied with motor magnitude and distance from 

Motor 1. From Motors 5 and 9, BRB faults spread with different intensities. Distance makes 

Motor 1 less impacted by BRB faults, yet its eccentricity fault causes a large amplitude. 

 

Figure 4. Multi−frequency fault propagation by Motors 1, 5, 9 to observe BRB, eccentricity fault im-

pact. 

 

Figure 5. Analysis chart of multi-frequency fault influence by Motors 1, 3, 5. 

Figure 6 presents the confusion matrices for the three phases training, testing, and 

validation of each motor, respectively. 
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Figure 6. Each motor’s confusion matrix utilizing targeted and output classes. 

Table 1 shows that satisfactory accuracy, ranging from 83% to 89%, was achieved in 

fault detection within the feature vector. This indicates the efficiency of the ANN network 

in handling multiple faults, even when similar fault types appear in other motor spec-

trums, causing ambiguity in identifying the fault source. 

Table 1. Best performances for classification for case study. 

Motors MSE Performance No. of Epochs Accuracy (%) 
Classification Error 

(%) 

M1 0.0506 245 83.4 16.6 

M2 0.0595 237 83.9 16.1 

M3 0.0615 228 83.2 16.8 

M4 0.0644 235 89.1 10.9 

M5 0.0610 222 85.0 15.0 

M6 0.0625 235 87.9 12.1 
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M7 0.0617 242 84.3 15.7 

M8 0.0610 238 86.4 13.6 

M9 0.0614 239 86.0 14.0 

4. Conclusions and Future Directions 

This research explored fault detection in distributed motors using the Internet of 

Electric Drives (IoED) concept, proposing a cyber-physical system architecture for accu-

rate fault identification. The system combined a Distributed Internet of Things (DIoT) ap-

proach with FFT for signal processing and an ANN for fault detection. FFT extracted fre-

quency features, while ANN enhanced accuracy through pattern recognition. Experi-

mental results showed real-time fault classification capabilities. The system successfully 

modeled two motor faults (BRB and ECE) based on existing spectrum patterns, accounting 

for motor size differences and fault signal propagation. A wireless sensor network (IWSN) 

using Xbee modules simulated an industrial multi-motor environment. Output data 

demonstrated close accuracy between simulated and real-time sensor measurements. 

However, signal complexity in the distributed network caused interference and misclas-

sification. The study also developed a decision-level fusion for more efficient and complex 

fault diagnosis. 

This research lays a foundation for future work, but several areas need further explo-

ration: optimizing cyber-physical system architecture for scalability, enhancing simula-

tions for fault detection in induction motors, expanding fault analysis to other fault types, 

exploring advanced diagnostic methods like fuzzy logic and Bayesian inference, ensuring 

compatibility with diverse IoT platforms, and developing adaptive fault detection mech-

anisms for evolving operational conditions and new fault types in distributed motor sys-

tems. 
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