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Abstract: With the emergence of visual sensors and their widespread application in intelligent sys-

tems, precise and interpretable visual explanations have become essential for ensuring the reliability 

and effectiveness of these systems. Sensor data, such as that from cameras operating in different 

spectra, LiDAR, or other imaging modalities, is often processed using complex deep learning meth-

ods, whose decision-making processes can be unclear. Accurate interpretation of network decisions 

is particularly critical in domains such as autonomous vehicles, medical imaging, and security sys-

tems. Moreover, during the development and deployment of deep learning architectures, the ability 

to accurately interpret results is crucial for identifying and mitigating any sources of bias in the 

training data, thereby ensuring fairness and robustness in the model’s performance. Explainable AI 

(XAI) techniques have garnered significant interest for their ability to reveal the rationale behind 

network decisions. In this work, we propose leveraging entropy information to enhance Class Acti-

vation Maps (CAMs). We explore two novel approaches: the first replaces the traditional gradient 

averaging scheme with entropy values to generate feature map weights, while the second directly 

utilizes entropy to weigh and sum feature maps, thereby reducing reliance on gradient-based meth-

ods, which can sometimes be unreliable. Our results demonstrate that entropy-based CAMs offer 

significant improvements in highlighting relevant regions of the input across various scenarios. 
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1. Introduction 

The rapid advancement of deep learning has led to the development of highly com-

plex models, often characterized by their difficult-to-interpret inner workings. As these 

models are increasingly deployed in many intelligent systems with critical applications, 

the need for transparency and interpretability has become crucial. This necessity has 

sparked significant interest in the field of Explainable AI (XAI), which seeks to clarify the 

reasoning behind a neural network’s decisions and outputs. Enhancing the explainability 

of AI models not only improves trust but also serves as a crucial tool for identifying and 

mitigating biases present in training datasets. 

In particular, Convolutional Neural Networks (CNNs), widely used in image classi-

fication tasks, often operate as “black boxes” due to the complexity of their decision-mak-

ing processes. To address this challenge, a growing body of research has focused on de-

veloping methods that reveal the underlying factors driving CNNs’ classification out-

comes. They aim to provide insights into the features and regions of images that signifi-

cantly influence the network’s decisions [1]. 

From another perspective, a promising area within AI research is the development 

of weakly supervised object detection approaches, which focus on identifying regions of 

interest in an image containing an object class without requiring exhaustive pixel-level 

annotations. Thus, with two different objectives, many methods developed for 
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Explainable AI (XAI) share similarities with weakly supervised object detection ap-

proaches. The techniques used to interpret and explain the decisions of neural networks—

by highlighting the key features or regions driving classification—can also be effectively 

leveraged as a weakly supervised approach for object detection [2,3]. Despite the progress 

made, many of the proposed XAI methods encounter challenges in specific scenarios, such 

as when dealing with multiple objects of the same class in an image. These limitations 

underscore the need for further research to identify failure cases and refine existing tech-

niques. Addressing these challenges is essential for developing more robust and reliable 

methods that can effectively explain CNNs’ decisions, thereby enhancing the practical 

utility and trustworthiness of AI systems. 

2. Literature Review 

In a broad categorization, the methods developed to interpret the decisions of com-

plex machine learning models can be divided into gradient-free and gradient-based ap-

proaches. Gradient-free methods do not rely on backpropagated gradients within the 

CNN. For instance, Local Interpretable Model-agnostic Explanations (LIME) [4] approxi-

mates a black-box model with a locally interpretable linear model by perturbing the input 

and observing the resulting changes in prediction. This method is model-agnostic and 

provides valuable insights across all types of machine learning models. Similarly, SHapley 

Additive exPlanations (SHAP) [5] leverages Shapley values from cooperative game theory 

[6] to fairly distribute the model’s prediction among input features, offering consistent 

explanations by considering the contribution of each feature across all possible subsets. 

When used for a Convolutional Neural Network (CNN) model, both LIME and SHAP can 

be computationally very expensive. The Occlusion Sensitivity by Zeiler and Fergus [7] is 

another gradient-free method that identifies critical regions in an input by systematically 

masking parts of the input and observing the effect on the model’s output. This straight-

forward approach effectively highlights which areas of the input are most influential. Fi-

nally, Counterfactual methods such as CX-TOM [8] further explain predictions of a model 

by illustrating the minimal changes needed in the input to alter the model’s decision. Such 

a technique is inspired by the way humans understand and explain phenomena through 

“Theory of Mind”. 

Gradient-based methods use the gradients of the classification score with respect to 

either the input or the features extracted by intermediate layers, such as the final convo-

lutional layer, to understand and explain the model’s decisions. These gradients are then 

used to weigh the extracted feature maps, effectively highlighting the most salient parts 

of the input that contribute to the model’s prediction. 

Grad-CAM (Gradient-weighted Class Activation Mapping) proposed by Selvaraju et 

al. [9] is a widely used method in explainable AI computing the gradients of the classifi-

cation score with respect to feature maps in the last convolutional layer. Other variants of 

Grad-CAM have also been successfully applied to networks dedicated to processing 3D 

data, such as PointNet, to identify important regions on 3D objects. [10]. HiResCAM 

(High-Resolution Class Activation Mapping) [11] addresses the resolution limitations of 

Grad-CAM by focusing on high-resolution feature maps, providing finer-grained and 

more detailed visual explanations. Respond-CAM [12] advances the interpretability of 

convolutional neural networks (CNNs), particularly in the domain of 3D biomedical im-

aging, by addressing limitations in existing visualization methods like Grad-CAM. Re-

spond-CAM incorporates a “sum-to-score” property, which ensures that the generated 

heatmaps accurately highlight the regions crucial for predictions in 3D images. This en-

hancement leads to more precise and interpretable visual explanations of CNNs. 

Other algorithms, such as Eigen-CAM [13], argue that gradient information could be 

erratic or deceptive especially in the deeper segments of a deep CNN where gradients 

might be weak or disappear. Eigen-CAM eliminates reliance on gradient information, by 

applying principal component analysis (PCA) directly to the output of convolutional 
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maps. This approach uses the principal components to generate clearer and more stable 

heatmaps, thereby improving the quality and interpretability of visual explanations. 

3. Entropy CAM 

Equations (1) and (2) describe the computation of gradcam map; The gradients of the 

classification score with respect to the final convolutional layer are global-average-pooled 

to obtain the weights of each extracted feature. 

𝛼𝑘
𝑐 =

1

𝑍
∑∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

𝑗𝑖

 (1) 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈∑𝛼𝑘

𝑐

𝑘

𝐴𝑘 (2) 

A significant drawback of Grad-CAM as discussed in HiResCAM [8] and can be per-

ceived in Equation (1) is its approach of averaging the gradient maps, which can lead to 

the neglect of important pixel-level information. By taking an average of the gradients 

across the spatial dimensions, Grad-CAM generates a course heatmap that highlights the 

general areas of the input that are influential to the model’s decision. However, this aver-

aging process smooths out the fine-grained details, potentially masking critical pixel-level 

contributions that could be essential for understanding the model’s behavior. As a result, 

the resulting visual explanations may lack precision, providing a broad overview of rele-

vant regions rather than a detailed, pixel-specific understanding of the model’s focus. 

In this work we suggest exploring the entropy information both in gradient maps 

and in feature maps extracted by the last convolution layer to create a feature map. The 

amount of disorder in a feature map obtained by a CNN can provide insights into various 

aspects of network performance and characteristics. To begin with it showcases the 

amount of information in the feature map; higher disorder indicates a more intricate range 

of values, which means that the feature map captures a wide array of features or patterns 

from the input data. On the hand lower disorder suggests a more uniform distribution 

potentially indicating that the feature map contains less information. Additionally, the 

level of disorder can shed light on how effective the feature map is, at distinguishing dif-

ferent elements. Maps with higher entropy could potentially better differentiate between 

various input patterns by capturing richer and more diverse information within them. 

Conversely lower entropy may indicate a decreased ability to discriminate between inputs 

effectively. Lastly entropy provides clues about the network’s focus and attentiveness. In 

this scenario high entropy could suggest that the network is not narrowing its attention to 

special features but rather reacting broadly to the input at hand. Conversely a decrease in 

entropy may indicate that the system is giving attention to specific attributes while possi-

bly neglecting others. 

As such, we explore two different versions of using entropy information to create 

CAM. In the first approach, we simply replace the averaging scheme used to produce the 

weights for each feature map in Grad-CAM with the entropy of the map. Equations (3) 

and (4) describe the CAM calculations. 

𝐸𝑘
𝑐 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘 ) (3) 

𝐿𝐺𝑟𝑎𝑑_𝐸𝑛𝑡𝑟𝑖𝑝𝑦−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈∑𝐸𝑘

𝑐

𝑘

𝐴𝑘 (4) 

In a second attempt to reduce the dependence on gradient information, which could 

be unreliable, we weigh and sum the feature maps based on the entropy values of the 

feature maps from the last convolutional layer. 
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4. Experiment Setup 

To create activation maps using the proposed Feature Entropy CAM and Grad En-

tropy CAM methods, we leverage the Xception [14] network pretrained on ImageNet [15]. 

We collected a dataset composed of challenging images from multiple sources, including 

the Stanford Dogs dataset [16], Fruit Classification dataset [17], and Goldfish dataset [18], 

all containing classes within the 1000 ImageNet categories. These datasets were chosen for 

their open access and their challenging nature with multiple objects. The Xception net-

work was fine-tuned on 70% of the images and tested on the remaining 30%. The goal was 

to evaluate how effectively each method visualizes all object instances and more precisely 

locates them. 

5. Results and Discussion 

In Figure 1, we compare explanation heatmaps produced by Grad-CAM, Respond-

CAM, HiResCAM, Grad Entropy CAM, and Feature Entropy CAM. Each method high-

lights the regions of the image that most contributed to the network’s decision. Among 

the visualized examples they are correctly classified by the network as “goldfish”, “Japa-

nese_spaniel”, “Maltese_dog”, “Shih-Tzu”, “Labrador_retriever”, “strawberry”, “ba-

nana”, and “strawberry” respectively. 

These visualizations suggest that in many cases entropy-based methods for generat-

ing heatmaps can provide a finer and more nuanced view of feature importance compared 

to other methods Specially Grad-CAM. Entropy-based maps perform better in expanding 

the most important regions to cover all object instances, as seen notably in rows 1 and 8. 

Additionally, these maps often more accurately identify the best locations of other objects, 

as demonstrated in rows 6 and 7. 

Entropy captures the level of disorder or variability within both gradient and feature 

maps, offering a more precise understanding of the network’s focus. High entropy can 

reflect rich, diverse feature representations, allowing for better discrimination of input 

patterns. 
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Figure 1. Comparison of CAM generated by different methods of the literature and entropy-based CAMs. 
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6. Conclusions 

In conclusion, this work introduces two entropy-based CAM visualization tech-

niques that utilize the amount of information contained in gradients and feature maps to 

generate heatmaps. Comparative visual evaluation indicates that these methods offer en-

hanced precision in determining the exact importance and localization of relevant regions 

in the input. By incorporating pixel-level entropy, these techniques provide more detailed 

and accurate explanations of model behavior, making them particularly beneficial in ap-

plications requiring fine-grained analysis of input features. 
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