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Abstract: Gaussian derivatives offer valuable capabilities for analyzing image characteristics such
as structure, edges, texture, and features, which are essential aspects in the assessment of image
quality. Present days Convolutional Neural Networks (CNN) gained its importance in all computer
vision applications and also in image quality assessment domain. Because of these characteristics
of gaussian derivative that performs a major role in assessing image quality, this work is carried
by combining these characteristics with the CNNs to better extract the features for assesssing the
quality of an image. While CNNs have demonstrated their ability to handle distortion effectively,
they are limited in their capacity to capture features at different scales, making them inadequate
in dealing with significant variations in object size. Consequently, the concept of spatial pyramid
pooling (SPP) has been introduced to address this limitation in image quality assessment (IQA).
SPP involves pooling the spatial feature maps from the highest convolutional layers into a feature
representation of fixed length. Additionally, through the utilization of convolutional block attention
module (CBAM) a module designed for the interpretation of images and local importance pooling
(LIP) proposed method for No-reference image quality assessment has demonstrated improved
accuracy, generalization, and efficiency compared to conventional (or) traditional IQA methods. .

Keywords: image quality assessment; no-reference; spatial pyramid pooling; local importance
pooling; convolutional block attention module

1. Introduction

In the present era, digital images are commonly captured using a wide range of
mobile cameras, subjected to compression utilizing both advanced and traditional method-
logies [1,2], Which traverse diverse communication channels [3], and are stored across
various devices. At every phase of image processing pipeline, there exists the potential for
introducing unforeseen distortions, which can result in a degradation of perceptual quality.
Consequently, the significance of image quality assessment (IQA) cannot be overstated, as it
performs a significant role in overseeing image quality and ensuring the reliability of image
processing procedures. IQA’s principal aim is to quantitatively forecast the perceptual qual-
ity of digital images. Throughout the stages of content generation to consumption, digital
images are prone to degradation. Distortions such as Gaussian white noise, Gaussian blur
(GB), or blocking artifacts may be introduced at various stages, including image acquisition,
transmission, storage, post-processing, or compression. An effective IQA algorithm plays a
crucial role in objectively measuring quality of images retrieved from Internet and precisely
evaluating the effectivness of image processing algorithms, encompassing tasks like image
compression and super-resolution, based on human observer perspectives.

Image quality measures are categorized into three groups based on the presence of
a reference or pristine image. While full-reference (FR) methods have the advantage of
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having access to complete reference image, no-reference (NR) approaches lacks details
about the reference image. Reduced-reference (RR) image quality assessment (IQA) lies
between these two extremes since it only has access to collection of features extracted from
reference image. As NR-IQA does not exploit any information about original image, it
poses a more difficult challenge compared to FR-IQA and is considered one of the most
demanding problems in IQA. NR-IQA finds wide-ranging applications since, in practical
scenarios, reference images are often unavailable, making NR IQA particularly relevant.

2. Related Work

No-reference image quality assessment (NR-IQA) methods analyze image quality
without a reference image by relying on natural image statistics, which tend to follow
specific distributions. Distorted images deviate from these regularities. NIQE [4] assesses
image quality by analyzing the deviation of mean subtracted contrast normalized (MSCN)
coefficients from a Gaussian distribution. IL-NIQE extends this by using wavelet-based
natural scene statistics (NSS) with support vector regression (SVR) to predict quality
scores [5]. BLIINDS [6] uses DCT coefficients, while CDIIVINE [7] refines wavelet-based
DIIVINE for better accuracy. BRISQUE [8] employs SVR in the spatial domain using
NSS data.

Deep learning techniques in Image Quality Assessment (IQA) utilize deep neural
networks to obtain visual features from an image. These features are subsequently em-
ployed to calculate a functional expression representing quality score of a distorted image.
Harnessing, capabilities of deep neural networks, these methods can effectively capture
complex patterns and relationships within the image data, enabling accurate and reli-
able quality estimation without relying on reference images. Kang [9] initiated CNN to
create a IQA method. In their study, Kim [10] employed a technique based on image
blocks to enhance the training dataset, this approach allows for improved learning and
generalization capabilities of the model, ultimately leading to enhanced performance in
image-related tasks.

3. Gaussian Filter and Gaussian Derivative

Gaussian filters are extensively employed as smoothing filters, with significant im-
plications in edge detection within the human visual system. They are proved as highly
valuable detectors for identifying edges and lines in various applications like noise supres-
sion, low-pass filtering, blurring etc. Further, Utilizing the derivatives of the Gaussian
filter enables the simultaneous execution of noise reduction and edge detection. In tradi-
tional computer vision relying on manually designed image features, it has been shown
that numerous visual tasks can be effectively tackled by computing image features and
descriptors derived from Gaussian derivatives or their approximations as initial layer of
image features [11–14]. It raises the question of whether Gaussian derivatives could serve
as computational primitives for building deep networks.

The first-order Gaussian derivative provides insights into the variations in image
intensity. It serves as a measure of the gradient, indicating the place at which pixel values
alter and Second-order Gaussian derivatives provides details regarding the curvature or the
rate of the gradient’s change. In image processing, this connection is frequently associated
with the identification of corners or locations with significant curvature.

The 1-D Gaussian function is defined as

G(x) =
1√
2πσ

exp
(
−x2/2σ2

)
(1)

Here, σ represents the standard deviation, acting as a parameter that determines the
width of the filter.
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The 1st and 2nd order derivatives of 1-D Gaussian function are given as

G′(x) =
∂G(x)

∂x
= − x

σ2
1√
2πσ

exp
(
− x2

2σ2

)
= − x

σ2 G(x) (2)

G′′(x) =
∂2G(x)

∂x2 =

(
x2

σ4 −
1
σ2

)
1√
2πσ

exp
(
− x2

2σ2

)
=

(
x2

σ4 −
1
σ2

)
G(x)

(3)

A 2-D Gaussian filter is represented as follows

G(x, y) =
1

2πσ2 e−(x2+y2/2σ2) (4)

The 1st and 2nd order derivatives of 2-D Gaussian function are given as

G′(x) =
∂G(x, y)

∂x
= − x

σ2 G(x, y)

G′(y) =
∂G(x, y)

∂y
= − y

σ2 G(x, y)
(5)

Gxx(x, y; σ) (6)

Gxx(x, y) =
∂2(G(x, y))

∂x2 =

(
x2

σ4 −
1
σ2

)
G(x, y)

Gyy(x, y) =
∂2(G(x, y))

∂y2 =

(
y2

σ4 −
1
σ2

)
G(x, y)

(7)

4. Spatial Pyramid Pooling Layer

Convolutional layers can accept inputs of any size, but their output sizes vary, while
classifiers like SVM or softmax, and fully-connected layers, require fixed-length vectors.
A common solution is the Bag-of-Words (BoW) approach [15], which pools features to
generate fixed-length vectors. Spatial Pyramid Pooling (SPP) [16,17] extends BoW by
pooling within local spatial bins, preserving spatial information and adapting to different
image sizes.

To handle variable-sized images in deep networks, we replace the last pooling layer
after the final two convolutional layers with an SPP layer. Within each bin, max pooling
is performed on filter responses. This produces fixed-length vectors of size kM, where M
is the number of bins and k is the number of filters. These vectors are then fed into the
fully-connected layer, allowing the network to process images of any size while maintaining
a consistent input for classification.

5. Convolutional Block Attention Module (CBAM)

CBAM [18] is a method designed for both channel and spatial dimensions to emphasize
the relevant features. It consists of two modules: the Channel Attention Module (CAM)
and the Spatial Attention Module (SAM). These modules operate sequentially and serve
distinct purposes. CAM focuses on learning the important content along channel axis,
while SAM concentrates on capturing positional information along the spatial axis. By
incorporating both modules, CBAM effectively highlights target features by attending to
both channel-specific details and spatial relationships.

When provided with an intermediate feature map Fm ∈ RC×H×W as input (where
C,H,W are dimension, height, width of the channel respectively), CBAM performs a two-
step attention calculation. First, it caluculates channel attention map of 1-dimensional.
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Mc ∈ RC×1×1 followed by a spatial attention map of 2-dimensional Ms ∈ R1×H×W . Atten-
tion procedure is represented as below.

F′m = Mc(Fm)⊗ Fm (8)

F′′m = Ms
(

F′m
)
⊗ F′m (9)

The element-wise multiplication operation, denoted by⊗, is used to perform the calcu-
lations in channel and spatial attention modules denoted by Mc(·) and Ms(·) respectively.
Process of execution of CBAM can be summarized as follows:

• The input feature map Fm is multiplied by CAM, resulting in intermediate output F′m.
• The refined feature F′m is then forwarded as input to the SAM, which calculates the

feature map F′′m.

Channel attention module: It accepts input from both average & max-pooled features.
Next, these characteristics are fed into a Multilayer Perceptron (MLP) that shares weights
among its layers. Resulting feature vectors are integrated through element-wise summation.
Primary objective of CAM is to compensate for the limitations of channel attention. CAM
is mathematically represented as follows:

Mc(Fm) = σ(MLP(AvgPool(Fm)) + MLP(MaxPool(Fm))) (10)

where σ denotes sigmoid activation function, MLP symbolizes shared fully connected layer,
AvgPool denotes operation of average pooling, MaxPool denotes operation of maximum
pooling, & ‘+’ represents the element-wise addition.

Spatial attention module: Steps in calculating spatial attention involves using of
average & max pooling operations across channel axis. Following that, the results are
combined to provide an efficient feature descriptor. A spatial attention map is created by
utilizing a convolution layer on a combined feature description.

Ms(Fm) ∈ RH×W (11)

by encoding instructions on what to highlight or diminish. Channel information from
a feature map is gathered through the application of these two operations on pooling,
resulting in the creation of two 2D maps:

Fm
s
avg ∈ R1×H×W and Fm

s
max ∈ R1×H×W (12)

One represents average-pooled features, while the other represents max-pooled fea-
tures across the channel. These two sets are then combined and subjected to convolution
through a convolutional layer, yielding 2D spatial attention map. SAM is formulated as
below:

Ms
(

F′m
)
= σ

(
conv7×7([AvgPool

(
F′m
)
; MaxPool

(
F′m
)]))

(13)

where σ is sigmoid activation function and conv7×7 is convolutional kernel of 7× 7.

6. Local Importance Pooling

To streamline non-local operations while preserving key characteristics, various sub-
sampling methods like average and max pooling reduce computation and memory usage.
However, in pixel-level tasks like IQA, inappropriate pooling can lead to loss of critical
details, weakening the effectiveness of non-local strategies. This study aims to balance
accuracy and computational efficiency in non-local enhancement by employing an adaptive
down-sampling method. Inspired by Local Importance Pooling (LIP) [19], the proposed
approach introduces a simplified non-local strategy for IQA. During training, LIP-based
non-local blocks enhance discriminative features and discard irrelevant ones, making it
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particularly effective for tasks requiring fine detail while reducing computational costs.
Following are the main contributions of proposed work.

• Proposed a Gaussian Derivative Convolutional Layer to extract features such as
texture,edge and structural content that are useful for Image quality assessment and
introduced spatial pyramid pooling to overcome the limitations imposed by the size
constraints of the features.

• In the proposed model we have introduced CBAM an attention module to effectively
highlight features by considering both channel and spatial relationships and utilized
local importance pooling in place of Max pooling and average pooling to enhance
features while discarding irrelevant ones. Proposed method is shown in Figure 1.

Figure 1. Proposed Architecture.

7. Materials and Methods

This section offers a comprehensive outline about databases & experimental results.

7.1. IQA Databases and Evaluation Metrics

Proposed method is verified on various databases LIVE [20], LIVE Wild [21], CSIQ [22],
LIVEMD [23], IVC [24] and MDID [25].

7.2. Evalution Metrics

Two standard assessment metrics are utilized by video quality experts group (VQEG) [26].
Spearman rank order coefficient (SROCC) & Pearson liner correlation coefficient (PLCC)
are utilized to analyse proposed method on synthetic, authentic and waterloo 3D phase-II
databases.

SROCC: A non-parametric metric as described below

SROCC = 1−
6 ∑i p2

i
m(m.2 − 1)

(14)

m symbolizes a number of samples and pi signifies distinction between ith image’s
ranking within the subjective and objective evaluations, respectively.

PLCC: Another non-parametric metric as described below.

PLCC =

n
∑

i=1
(Qi −Q)(pi − p)√

n
∑

i=1
(Qi −Q)2(pi − p)2

, (15)

where pi symbolizes subjective score (MOS or DMOS) of ith test image, and p̄ and Q̄ denote
average values of predicted and subjective scores respectively.

8. Expermental Results

The following section discusses the proposed method’s performance on individual
databases and individual distortions and cross database validation.

8.1. Performance on Individual Databases

Proposed method is estimated against various state-of-art metrics like dipIQA [27],
MEON [28], LPIPS [29], MetaIQA [30], CONTRIQUE [31], GraphIQA [32], Deepsim [33],
UNIQUE [34]. SROCC and PLCC on different databases is shown in Tables 1–10. Metrics
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that are performing well are highlighted. From Tables 1, 5, 9 and 10 it can be seen that for
LIVE and IVC database proposed method performed better for SROCC and performance is
good for CSIQ, LIVE Wild, LIVE-MD and IVC for PLCC. Further the scatter plots curve
is displayed in Figure 2, which shows high correlation among the scores predicted by
proposed method and subjective scores.

(a) (b) (c)

(d) (e) (f)

Figure 2. Scatter plots of quality scores, predicted by NiN vs. Subjective scores(MOS/DMOS) of (a)
LIVE (b) LIVE Wild (c) CSIQ (d) MDID-2016 (e) LIVE-MD and (f) IVC databases.

Table 1. SROCC on LIVE Database.

Method LIVE [20]

CONTRIQUE [31] 0.961

Deepsim [33] 0.968

dipIQA [27] 0.958

GraphIQA [32] 0.980

LPIPS [29] 0.934

MEON [28] 0.954

UNIQUE [34] 0.968

Proposed 0.964

Table 2. SROCC on CSIQ Database.

Method CSIQ [22]

CONTRIQUE [31] 0.958

Deepsim [33] 0.919

dipIQA [27] 0.949

GraphIQA [32] 0.959

LPIPS [29] 0.896

MEON [28] 0.944

UNIQUE [34] 0.927

Proposed 0.951
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Table 3. SROCC on LIVE Wild Database.

Method LIVE Wild

GraphIQA [32] 0.862

MEON [28] 0.693

MetaIQA [30] 0.835

UNIQUE [34] 0.890

Proposed 0.841

Table 4. SROCC on LIVE-MD Database.

Method LIVE-MD

GraphIQA [32] 0.940

MEON [28] 0.935

Proposed 0.929

Table 5. PLCC on LIVE Database.

Method LIVE

CONTRIQUE [31] 0.960

Deepsim [33] 0.974

dipIQA [27] 0.941

LPIPS [29] 0.932

MEON [28] 0.943

UNIQUE [34] 0.969

Proposed 0.963

Table 6. PLCC on CSIQ Database.

Method CSIQ

CONTRIQUE [31] 0.947

Deepsim [33] 0.919

dipIQA [27] 0.930

LPIPS [29] 0.876

MEON [28] 0.932

UNIQUE [34] 0.902

Proposed 0.935

Table 7. PLCC on LIVE Wild Database.

Method LIVE Wild

MEON [28] 0.688

MetaIQA [30] 0.802

UNIQUE [34] 0.854

Proposed 0.844
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Table 8. PLCC on LIVE-MD Database.

Method LIVE-MD

MEON [28] 0.920

Proposed 0.916

Table 9. SROCC on IVC Database.

Method IVC

LPIPS [29] 0.809

Proposed 0.940

Table 10. PLCC on IVC Database.

Method IVC

LPIPS [29] 0.822

Proposed 0.930

8.2. Performance on Individual Distortions

Robustness of proposed model is assesses by conducting analysis over individual dis-
tortions of LIVE and CSIQ databases with state-of-art metrics like BLINDS-II [6], BLISS [35],
BRISQUE [8], CNN [9], CORNIA [36], DB-CNN [37], dipIQ [27], FRIQUEE [38], HOSA [39],
M3 [40], MEON [28], TWO-STREAM [41]. With the help of Tables 11–14, proposed method
showed improved performance in most of the individual distortions.

Table 11. SROCC for individual distortions in the LIVE database.

Method FF JPEG WN JP2K Gblur

BLIINDS-II [6] 0.927 0.942 0.978 0.951 0.944

BLISS [35] 0.914 0.929 0.903 0.927 0.952

BRISQUE [8] 0.828 0.965 0.982 0.929 0.964

CNN [9] 0.908 0.977 0.978 0.952 0.962

CORNIA [36] 0.921 0.947 0.958 0.924 0.951

DB-CNN [37] 0.930 0.972 0.980 0.955 0.935

dipIQ [27] N/A. 0.969 0.975 0.956 0.940

FRIQUEE [38] 0.884 0.947 0.983 0.919 0.937

HOSA [39] 0.954 0.954 0.975 0.935 0.954

M3 [40] 0.902 0.966 0.986 0.930 0.935

MEON [28] 0.926 0.951 0.972 0.914 0.944

SOM [42] 0.937 0.952 0.984 0.947 0.976

TWO-STREAM [41] 0.911 0.950 0.979 0.966 0.963

Proposed 0.942 0.957 0.985 0.962 0.967
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Table 12. PLCC for individual distortions in the LIVE database.

Method FF JPEG WN JP2K Gblur

BLIINDS-II [6] 0.944 0.959 0.985 0.956 0.948

BLISS [35] 0.916 0.930 0.948 0.929 0.969

BRISQUE [8] 0.894 0.971 0.989 0.940 0.965

CNN [9] 0.933 0.981 0.984 0.953 0.953

CORNIA [36] 0.943 0.962 0.974 0.944 0.961

DB-CNN [37] 0.961 0.986 0.988 0.967 0.956

dipIQ [27] N/A. 0.980 0.983 0.969 0.948

FRIQUEE [38] 0.936 0.955 0.991 0.935 0.949

HOSA [39] 0.967 0.967 0.983 0.949 0.967

M3 [40] 0.920 0.977 0.992 0.945 0.947

MEON [28] 0.936 0.968 0.982 0.923 0.929

SOM [42] 0.954 0.961 0.991 0.952 0.974

TWO-STREAM [41] 0.949 0.963 0.995 0.966 0.950

Proposed 0.949 0.974 0.982 0.966 0.970

Table 13. SROCC for individual distortions in the CSIQ database.

Method WN Gblur JP2K JPEG CC

BRISQUE [8] 0.723 0.820 0.840 0.806 0.804

CORNIA [36] 0.664 0.860 0.831 0.513 0.462

DB-CNN [37] 0.948 0.947 0.940 0.953 0.870

dipIQ [27] 0.904 0.932 0.944 0.936 N/A.

FRIQUEE [38] 0.748 0.870 0.846 0.869 0.838

HOSA [39] 0.604 0.841 0.818 0.733 0.716

M3 [40] 0.741 0.868 0.911 0.740 0.770

MEON [28] 0.951 0.918 0.948 0.948 N/A.

Proposed 0.908 0.927 0.945 0.939 0.935

Table 14. PLCC for individual distortions in the CSIQ database.

Method WN Gblur JP2K JPEG CC

BRISQUE [8] 0.742 0.891 0.887 0.828 0.835

CORNIA [36] 0.687 0.904 0.883 0.563 0.543

DB-CNN [37] 0.956 0.969 0.982 0.971 0.895

dipIQ [27] 0.927 0.958 0.959 0.975 N/A.

FRIQUEE [38] 0.778 0.905 0.883 0.885 0.864

HOSA [39] 0.656 0.912 0.899 0.759 0.744

M3 [40] 0.728 0.917 0.928 0.768 0.787

MEON [28] 0.958 0.946 0.979 0.925 N/A.

Proposed 0.914 0.940 0.964 0.987 0.938
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9. Conclusions

Proposed method demonstrates superior performance in handling both synthetic and
authentic distortions within Image Quality Assessment (IQA) tasks. Specifically, it has
achieved remarkable results on the LIVE and IVC databases, with Spearman’s Rank Order
Correlation Coefficient (SROCC) values of 0.964 and 0.940, respectively, indicating a strong
correlation among predicted and ground truth quality scores. Furthermore, proposed
method excelled in evaluating image quality across various databases, including CSIQ,
LIVE Wild, LIVE-MD, and IVC, achieving Pearson Linear Correlation Coefficient (PLCC)
values of 0.935, 0.844, 0.916, and 0.930, respectively. These results highlight the robustness
and effectiveness of the proposed approach in accurately assessing image quality across
different types of distortions and diverse datasets.
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Abbreviations

The following abbreviations are used in this manuscript:
IQA Image Quality Assessment
GB Gaussian Blur
NR-IQA No-reference image quality assessment
FR-IQA Full-Reference image quality assessment
MSCN mean subtracted and contrast normalized
NSS Natural Scene Statistics
DCT Discrete Cosine Transform
CNN Convolutional neural networks
CBAM Convolutional Block Attention Module
LIP local importance based pooling
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