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Abstract: In certain applications of acoustic emission sensors, Acoustic Maps can be generated from 

captured signals. The work “In-Dressing Acoustic Map by Low-Cost Piezoelectric Transducer” in-

troduces an innovative technique using these sensors to map grinding wheel surfaces, essential for 

finishing machined parts. However, producing sharp acoustic maps is challenging due to industrial 

interference. This study explores digital image processing techniques to enhance these maps, using 

cloud-based tools. Techniques such as smoothing, equalization, and edge detection (Sobel, Canny, 

Roberts, and Prewitt) were applied. The processed acoustic maps revealed sharper details, enabling 

more accurate assessments of dressing conditions. Results demonstrate the effectiveness of digital 

image processing when applied to acoustic maps, significantly improving the evaluation of the 

dressing process and contributing to the development of Industry 4.0. 
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1. Introduction 

As described in [1], grinding is a material removal process carried out using an abra-

sive tool, the grinding wheel, which is a disc-shaped component composed of high-hard-

ness grains that rotates around its own axis. In summary, it is a rotary abrasive tool widely 

used to provide final finishing to previously machined parts. 

According to [2], over time, the surface of the grinding wheel tends to wear down 

and become glazed, when the pores of the wheel get clogged with chips, impairing the 

grinding process. To restore the grinding wheel’s surface and ensure optimal grinding 

performance, a process called dressing is required, in which the abrasive wheel is ma-

chined, balanced, and its surface renewed, restoring its abrasive properties. 

Monitoring the dressing process of the grinding wheel is crucial to ensure the quality 

of the grinding and, consequently, the surface finish of the parts. Several studies have 

been conducted to monitor the grinding wheel using sensors to determine the optimal 

time for dressing [3,4]. The work of In-Dressing Acoustic Map by Low-Cost Piezoelectric 

Transducer [5], in particular, addresses the surface mapping of grinding wheels in the 

dressing process, using certain acoustic emission sensors. 

However, in the generated acoustic maps, noise with tonalities close to the known 

figures can be observed, a characteristic that can hinder and invalidate processing using 

simple filtering methods. It is also observed that the known images are illustrated by 
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abrupt variations in gray tones in certain regions. This characteristic fits the definition of 

edges, and thus, the possibility of applying edge detection algorithms, such as Sobel Filter, 

Prewitt, Roberts, and Canny Algorithm, is questioned. 

Thus, this study proposes the application of edge detection algorithms, such as Sobel, 

Prewitt, Roberts, and Canny, to enhance the interpretation of acoustic maps generated 

during the dressing process. By using these tools, it is expected to enhance the identifica-

tion of defects and marks on the grinding wheel’s surface, minimizing noise interference 

that could compromise the accuracy of the analyses. The work aims to contribute to the 

development of more robust monitoring methods, capable of ensuring a more precise and 

effective evaluation of the state of the grinding wheels, optimizing the grinding process 

and, consequently, the quality of the machined parts. 

2. Methodology 

In Figure 1 illustrates one of the acoustic maps obtained in [5]. In this study, the au-

thors performed the dressing of a grinding wheel with known symbols engraved on it. 

During the restoration process, acoustic signals were captured by sensors strategically 

placed on the tool, enabling the generation of a topological map, as shown. 

  
(a) (b) 

Figure 1. Original acoustic map of the marks inserted on the grinding wheel: (a) “+” mark; (b) “T” 

mark; [5]. 

These acoustic maps are essentially grayscale images, where significant details are 

indicated by abrupt variations in intensity. However, the nature of the collected signals 

introduces a considerable amount of noise, resulting in polluted acoustic maps that dis-

tort, attenuate, and even obscure the tonal variations crucial for identifying the regions of 

interest. It is important to note that the acoustic map presented in the figure already em-

ploys certain filters in an attempt to make the details more visible; however, as can be 

seen, these filters were not sufficient to significantly reduce the noise. 

The following sections present and discuss the operation of advanced digital image 

processing tools. These tools have the potential to enhance details in noise-polluted im-

ages, surpassing the currently applied methods and improving the visual interpretation 

of acoustic maps. 

2.1. Edge Detection 

The visual analysis of the generated acoustic map confirms the ineffectiveness of us-

ing basic filters, highlighting the need for more advanced image processing tools, such as 

edge detection techniques. In this work, edge detection is performed by applying masks 

(kernels) to the image using the convolution procedure, which allows for identifying ab-

rupt changes in intensity and facilitating a more precise analysis of the acoustic map char-

acteristics. 

The convolution process in image processing, as discussed by Gonzales [6], involves 

applying the kernel to each pixel of an image sequentially. This filter analyzes each pixel, 

known as the “initial pixel,” along with its neighbors if the image is two-dimensional. For 

each of these pixels, the values are multiplied by the corresponding values in the kernel, 

and the sum of these products becomes the new value of the initial pixel. This process is 

repeated for all the pixels in the image, thereby affecting each pixel based on the values of 

its neighbors. 

To illustrate, consider the following array to which we will apply the mask: 
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𝐴 = |
|

1 2 3 0 1
4 5 6 1 0
7 8 9 0 1
0 1 2 1 0
1 0 1 0 1

|
| (1) 

And we have the mask: 

𝐾 = |
1 0 −1

1 0 −1

1 0 −1

| (2) 

To perform the convolution A ∗ K, we center the mask on the first pixel of the array 

and calculate the sum of the products of the corresponding elements. For example, for the 

first pixel, the calculation is: 

𝐴 ∗ 𝐾(1,1) = 1 ∗ 0 + 2 ∗ (−1) + 4 ∗ (0) + 5 ∗ (−1) =  −7  (3) 

The result of this calculation will then be the first value of the final matrix. To con-

tinue with the convolution, we repeat the same process, shifting the mask from right to 

left and from top to bottom. 

After performing all the necessary calculations, the resulting matrix from the convo-

lution will be: 

𝐴 ∗ 𝐾 =  |
|

−7 −4 6 8 1
−15 −6 14 16 1
−14 −6 12 16 2
−9 −4 8 10 1
−1 −2 0 2 1

|
| (4) 

As mentioned earlier, what differentiates the Roberts, Prewitt, and Sobel edge filters 

are the masks, which have distinct dimensions and values. The following sections present 

each edge detector, showing the kernel to be convolved and highlighting the characteris-

tics of each method. 

2.2. Sobel, Prewitt, Roberts and Canny Detectors  

According to Rakesh Ranjan and Vinay Avasthi [7], the Sobel operator is one of the 

most commonly used for edge detection. It evaluates the gradient of intensity at each pixel 

and provides information about the direction (x and y) and magnitude of the maximum 

gradient. To perform edge detection using the Sobel operator, two kernels are used: one 

for the x direction and another for the y direction, as shown in Equations (5) and (6). 

𝐺𝑥 = |
−1 0 1
−2 0 2
−1 0 1

| (5) 

𝐺𝑦 = |
−1 −2 −1
0 0 0
1 2 1

| (6) 

The diagram in Figure 2 represents the functioning of the Sobel edge detector. First, 

the Sobel masks (Gx and Gy) are convolved with the image to evaluate the gradient of the 

image in the X and Y directions. These results can then be combined to find the absolute 

magnitude of the gradient at each point and the orientation of this gradient. Once the 

gradient is obtained, an appropriate threshold is selected to distinguish between edge pix-

els and non-edge pixels. This thresholding step is responsible for identifying and detect-

ing the presence and orientation of edges in the image. 
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Figure 2. Sobel Application Diagram. 

The gradient magnitude G is calculated as the square root of the sum of the squares 

of the gradients in the x and y directions, as shown in the figure below. 

𝐺 =  √𝐺𝑥2 + 𝐺𝑦2 (7) 

Due to the greater weight at the edges of the mask, the Sobel edge detection method 

places more emphasis on pixels that are in the direction of the gradient, with a character-

istic of slightly smoothing some noise. Compared to more advanced algorithms, it has the 

disadvantage of potentially rejecting real edges, where some edges may not be accurately 

detected. Additionally, the Sobel operator is sensitive to noise, which can lead to the de-

tection of false edges in the presence of noise. These limitations should be considered 

when using this method in practical applications. 

Prewitt also uses two kernels, Gx and Gy, to search in the horizontal and vertical di-

rections. The shapes of the kernels Gx and Gy are illustrated in Equations (8) and (9) [8]. 

𝐺𝑥 = |
−1 0 1
−1 0 1
−1 0 1

| (8) 

𝐺𝑥 = |
−1 −1 −1
0 0 0
1 1 1

| (9) 

The Prewitt method is very similar to the Sobel method, both in the dimensions of 

the kernel and in the application, method following the diagram in Figure 2 . The differ-

ence lies in the weights of some coefficients at the edges of the masks [9]. This difference 

at the edges of the kernels gives the Prewitt method a greater sensitivity to thin edges, as 

it eliminates the smoothing characteristic but is more susceptible to noise and false edge 

detections. 

The Roberts Detector, on the other hand, is defined by two matrices (masks) but with 

2 × 2 dimensions, having the characteristic of being simpler and faster to compute. How-

ever, it is not as widely used as other edge detectors due to its asymmetry. The matrices 

of the Roberts detector (Roberts operator) are defined by Equations (10) and (11). This 

format gives the method the characteristic of diagonal filtering, being the simplest of all. 

𝐺𝑥 = |
1 0
0 −1

| (10) 

𝐺𝑥 = |
0 1

−1 0
| (11) 

The calculation of the gradient components Gx and Gy is performed in the same way 

as for the Sobel and Prewitt detectors, i.e., by 2D convolution of the Roberts operator with 
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the image, gradient magnitude calculation through the combination of gradients, and 

thresholding [10]. 

Compared to the methods discussed up to the previous section, the Canny Algorithm 

is of higher complexity. Unlike simple binary maps, the Canny algorithm achieves high-

performance edge detection, ensuring an appropriate edge width. The Canny algorithm 

can be divided into four different stages: 

• Gaussian Filtering; 

• Gradient Magnitude Calculation; 

• Non-Maximum Suppression; 

• Edge Tracking by Hysteresis; 

First, the input image is smoothed using a Gaussian filter. Then, the edge gradient is 

calculated similarly to the Sobel operator. In the non-maximum suppression step, the gra-

dient at each edge point is compared, eliminating those that do not represent the local 

maximum. Finally, in the edge tracking by hysteresis step, edges connected to strong edge 

pixels are identified, ensuring a more precise and continuous detection of edges [11]. 

However, it can be stated that the Canny algorithm is insensitive to slightly smooth edges, 

as the Gaussian smoothing performed at the beginning of the algorithm tends to consider 

small variations as noise [12]. 

2.3. Edge Detection in the Cloud 

In the development of this study, the choice of Google Colab as the platform for per-

forming filtering and image processing is motivated by several factors. Firstly, Google 

Colab is a free tool that supports the use of popular data science and machine learning 

libraries, as well as providing cloud processing infrastructure. This enables the study to 

be conducted efficiently without the need for advanced local computational resources. 

Additionally, using Google Colab provides access to libraries that already include 

the essential features for executing the discussed algorithms. Libraries such as cv2, which 

is part of OpenCV, can be extensively used in this study to apply the Sobel, Prewitt, Rob-

erts, and Canny methods, streamlining the development and analysis process. The use of 

pre-compiled and optimized libraries allows for efficient application of these algorithms, 

which is crucial for real-time data analysis, such as with acoustic emission sensors. 

Among the libraries used, numpy and matplotlib stand out, employed for mathemat-

ical operations and signal processing. Numpy is used for vector calculations and matrix 

manipulation, essential elements for handling acoustic data and processed images. Mat-

plotlib is utilized for graphical visualization of the results, allowing for a clear and objec-

tive analysis of the edges detected by each algorithm. These libraries, combined with the 

processing framework of Google Colab, ensure the smooth flow of the study, from data 

acquisition to the final visualization of images. 

3. Results and Discussion 

The analysis of the results was conducted by examining the characteristics of the final 

images obtained after applying each proposed method. This analysis details the aspects 

of each image concerning the specific characteristics of each filter and compares the effec-

tiveness of the methods with each other. The following figures show resulting images 

from each method discussed in the previous section. 

  
(a) (b) 

Figure 3. Image with Sobel detector: (a) “+” mark; (b) “T” mark. 
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(a) (b) 

Figure 4. Image with Prewitt detector: (a) “+” mark; (b) “T” mark. 

  
(a) (b) 

Figure 5. Image with Roberts detector: (a) “+” mark; (b) “T” mark. 

  
(a) (b) 

Figure 6. Image with Canny detector: (a) “+” mark; (b) “T” mark. 

Comparing the Figure 3 and 4, there is a minimal difference between the results of 

the Prewitt and Sobel filters, where the image filtered by Prewitt shows a subtle enhance-

ment of certain details in some regions, due to the similarity between their kernels, as 

described in previous sections. Compared to the Figure 5, it is observed that Roberts iden-

tifies slightly smoother edges with less contrast. Due to the shape of the Roberts kernel, 

this method ends up presenting some intended details, although these are in lower con-

trast, making it simple to apply another filtering method to eliminate them. 

Canny, shown in Figure 6, stands out for its efficient noise filtering, its ability to reject 

unwanted edges, and the greater thickness of the lines marking the edges. However, it is 

noted that the detection of known edges can be impaired due to the large number of pro-

cedures involved. Although the Canny algorithm is effective in identifying edges, it may, 

in some cases, distort the actual contours of the image, resulting in a less accurate repre-

sentation. 

To benefit the analysis by utilizing the particularities of each edge detector, the pos-

sibility of overlaying filtered images is highlighted. That is, by overlaying two images, 

each processed with different edge detection methods, a more comprehensive analysis of 

the acoustic map can be achieved. The Figure 7 places the image filtered with the Sobel 

method at 50% transparency over the edges identified by Canny. 

  
(a) (b) 

Figure 7. Canny image with 50% Sobel Overlay: (a) “+” mark; (b) “T” mark. 

This analysis allows for the visualization of details omitted or distorted by the Canny 

method, providing a more flexible visual analysis of the final image. Since the intensity of 

edge indications from the methods may be similar, it is necessary to apply a transparency 

index in the overlay so that the secondary image does not compromise the integrity of the 

primary method. This approach allows for a complete and flexible analysis of the surface 

of the grinding wheel, minimizing unwanted signals, false edge detections, and amplify-

ing key details. 
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4. Conclusions 

This study demonstrated that the application of image processing techniques, espe-

cially edge detection algorithms, offers an effective method for improving the visualiza-

tion of acoustic maps in abrasive wheel dressing processes. The use of Google Colab for 

cloud processing was particularly advantageous, as it provided a robust and accessible 

infrastructure for executing complex algorithms without the need for advanced local com-

putational resources. This aligns with the principles of Cloud Manufacturing, where 

cloud-based platforms facilitate scalable, flexible, and efficient manufacturing processes. 

The platform also facilitated the integration of libraries such as cv2, numpy, and mat-

plotlib, allowing for an efficient workflow and detailed data analysis. The overlay of dif-

ferent algorithms, such as Sobel and Canny, enabled a more detailed and flexible analysis 

of the detected edges, highlighting important characteristics for monitoring and control-

ling tool wear. The results suggest that using these tools can not only contribute to im-

proving the quality of acoustic maps but also facilitate the integration of these image pro-

cessing methods into TCM systems for monitoring the dressing process, indirectly opti-

mizing grinding, improving the quality of machined parts, and ensuring greater efficiency 

in controlling the wheel’s condition. Additionally, the discussed approaches can be ex-

panded to other machining processes, such as turning and milling, contributing to the 

advancement of sensor-based monitoring technologies and supporting the development 

of Industry 4.0, where modern technology-based solutions are fundamental for smart 

manufacturing systems. 
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