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Abstract: Structures are exposed to aging and extreme events that can decrease the relevant safety
margins or even lead to (partial) collapse mechanisms under unforeseen loading conditions. Structural
health monitoring (SHM) looks therefore compulsory to avoid accidents, by tracking the evolution of
the state of the system and sending out warnings as soon as critical conditions are met or drifts from
the response of the undamaged structure are identified. One of the approaches to online SHM rests
on Kalman filtering, which is able to build the time evolution of the structural state upon the Bayes’
rule. In a customary joint version of the filtering procedure, state variables and health parameters are
joined together in an extended state vector: while state variables, like e.g., lateral displacements of
shear buildings, can be observed thanks to pervasive sensor networks, the health parameters usually
linked to the structural stiffness cannot, leading to possible divergence issues characterized by biases
in the estimates. These issues are further enhanced by difficulties in setting the covariance terms,
whose initialization is required to utilize Kalman filters. In this work, we investigate an adaptive
strategy to the online tuning of the aforementioned covariance terms, leading to an improvement of
the filter outcomes without issues related to its instability. This procedure is then applied to the SHM
of a shear building, to highlight the excellent results in terms of accuracy and robustness.

Keywords: structural health monitoring; extended Kalman filter; adaptive Kalman filtering; damage
detection

1. Introduction

Structural health monitoring (SHM) plays a vital role in ensuring the safety, reliability,
and longevity of large-scale structures such as bridges, buildings, dams, and wind turbines.
It involves the continuous monitoring and assessment of the structural integrity to detect
potential defects, damages, or anomalies. Traditional SHM approaches rely on periodic
inspections, which may not provide real-time insights into structural health and may lead
to delayed detection of critical issues. The global structural health monitoring market size
was valued at USD 2210 million in 2021 and is projected to reach USD 7595 million by 2030,
growing at a compound annual growth rate of 14.7% during the forecast period [1].

The Extended Kalman Filter (EKF) can simultaneously estimate both structural prop-
erties, such as the interstorey stiffness in a shear building, and state by extending the
state vector [2,3]. However, the EKF assumes complete knowledge of the process noise
covariance and measurement noise covariance matrices, which is difficult to foresee in
most cases and this significantly affects the accuracy of estimations. To estimate the process
and measurement noise covariances, approaches based on adaptive filtering have been
proposed, e.g., by Mehra [4].

In this paper, an adaptive strategy is adopted in conjunction with the EKF on a
two-story shear building, aiming to automatically tune the process noise covariance and
improve the accuracy and stability of the estimation of the structural stiffness and, therefore,
health. The general conclusion is that the Adaptive Extended Kalman Filter (AEKF) not
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only outperforms the traditional EKF in accuracy, but also demonstrates robustness in
multi-parameter estimation and damage detection.

The remainder of the contribution is arranged as follows. Section 2 discusses the
structural model and the adaptive Kalman filtering theory here applied. In Section 3,
numerical outcomes and estimations by the Kalman filtering procedure are presented, to
validate the advantages of the AEKF. In Section 4, some final conclusions are drawn along
with proposed further enhancements to deal with realistic structural systems.

2. Materials and Methods
2.1. Structural Model and Data Generation

The considered structure is the two-story shear building shown in Figure 1. Measure-
ment of the lateral displacements of the first and second stories are collected every 0.01 s
and are adopted as observations for the Kalman filter. Exploiting the recorded earthquake
input employed in [5], the structure is subjected to the relevant equivalent forces over a du-
ration of 40.96 s. An explicit Newmark time integration scheme [6] is employed to generate
the pseudo-experimental evolution of the state of the structure via a MATLAB code. The
interstorey stiffnesses k1 and k2 have to be identified or tuned during the analysis, and may
even change in time due to some damage accumulation processes which are indeed not
explicitly modeled due to a time scale separation principle, see [7,8].

Figure 1. Sketch of the two-story shear building, with lateral displacements of the two stories
highlighted.

2.2. Extended Kalman Filter

The EKF, see [9–17], operates on the structural system through the state transition
equation:

xk = f(xk−1) + wk, (1)

and the measurement equation:
zk = Hxk + vk, (2)

where:

• xk is the state vector at time tk, including in our analysis displacements, velocities,
accelerations, and interstorey stiffness values.

• zk is the measurement vector at time tk, consisting of the lateral displacements of the
two stories.

• f(·) is the state transition function, linked to the adopted Newmark time integration
procedure. It must be noted that the response of the system is linear, but the operator f
becomes nonlinear due to the inclusion of the stiffness terms in the state vector. Details
can be found in Appendix A.

• H is the observation matrix, describing the relationship between measurements and
the state. In this case, it is a Boolean matrix with non-zero entries to select the observed
displacements out of the state vector.



Eng. Proc. 2024, 1, 0 3 of 1

• wk is the process noise, a zero-mean Gaussian process with covariance Qk.
• vk is the measurement noise, a zero-mean Gaussian process with covariance Rk.

The EKF can be decomposed into 3 main steps:

1. Initialization
It sets the initial guess for the state x̂0|0 and error covariance P0|0.

2. Prediction
The estimate of the predicted state is moved forward in time according to:

x̂k|k−1 = f(x̂k−1|k−1); (3)

and, if the state transition Jacobian is:

Fk−1 =
∂f
∂x

∣∣∣∣
x̂k−1|k−1

. (4)

then the predicted error covariance reads:

Pk|k−1 = Fk−1Pk−1|k−1F>k−1 + Qk−1. (5)

with ·> standing for transpose.

3. Update
By exploiting the innovation or measurement residuals, defined as the difference
between measurements and prediction from the last step according to:

yk = zk −Hx̂k|k−1; (6)

The innovation covariance can be obtained as:

Sk = HPk|k−1H> + Rk, (7)

and the Kalman gain reads:

Kk = Pk|k−1H>S−1
k . (8)

The updated state estimate is retrieved as:

x̂k|k = x̂k|k−1 + Kkyk, (9)

and the updated error covariance is:

Pk|k = (I−KkH)Pk|k−1. (10)

2.3. Adaptive Extended Kalman Filter

In Kalman filtering, it is usually assumed that the process noise covariance and the
measurement noise covariance are known in advance, or can be tuned beforehand on the
basis of a trial-and-error procedure. They thus represent a kind of hyperparameters of
the numerical procedure. This can be true for Rk, as it is related to the noise level of the
measurements and so can be determined from the technical features of the measurement
equipment, but it is certainly not for Qk. An improper selection of Qk can lead to significant
errors in state estimation, so an adaptive strategy for estimating Qk and R based on the
innovation sequence is reported here, see also [18].

Specifically, the process noise covariance can be recursively updated by way of the
expected value of the innovation, according to:

Qk−1 = Kk E
[
yky>k

]
KT

k (11)
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where E
[
yky>k

]
is usually computed by averaging all the innovation terms at each step of fil-

tering. A so-called forgetting factor α, see also [19], is used to weight the innovation [18,20],
so that the estimation of Qk over time is:

Qk = α Qk−1 + (1− α)
(

Kkyky>k K>k
)

(12)

The value of α obviosuly affects the rate of estimation change. In this work, after a pre-
liminary parametric investigation, α has been set to 0.6, to attain a robust and reliable
performance.

3. Results

In this study, the AEKF is compared with the traditional EKF, in terms of accuracy of
estimations of the interstorey stiffness(es) of the shear building of Figure 1. In the analysis,
the process noise covariance matrix is randomly initialized, to possibly avoid any bias
induced by the initial expert guess. First, a single parameter is tuned by assuming that
the interstorey stiffness is constant for the building. Next, to investigate the capability of
AEKF to handle a multi-parameter estimation problem, a different value of the stiffness
is adopted for each interstorey. Finally, to also assess the capability of AEKF to promptly
react to changes in the structural health, departing from the second case a reduction of one
stiffness is introduced in the analysis, so that the estimation becomes a truly time-dependent
problem solution.

In the absence of an accurate know-how in terms of health parameters, the AEKF
is shown to be able to automatically adjust the stiffness terms based on the innovation
sequence, yielding high-accuracy estimations of both states and structural health. To
demonstrate the effectiveness of the AEKF, the results obtained in the three scenarios
described above are presented in the following.

3.1. Scenario 1: Single Stiffness Parameter

In this case, the two interstorey stiffness values k1 and k2 are assumed to be the same,
namely k1 = k2 = 1.4 × 109 N/m. To provide a fair comparison, the filters are initialized
with the same state estimate and error covariance matrix, as well as the same process and
measurement noise covariance matrices, adopting:

x̂0|0 =
[
0 0 0 0 0 0 1× 109]>

P0|0 = diag(1× 10−10, . . . , 1× 10−10︸ ︷︷ ︸
6 times

, 1× 1014)

Q0 = diag(1× 10−4, . . . , 1× 10−4︸ ︷︷ ︸
6 times

, 1× 1012)

R0 = diag(8.6× 10−9, 2.2× 10−8, 6.3× 10−6, 1.6× 10−5, 5.3× 10−3, 1.4× 10−2, 1× 1016)

The AEKF shows a superior performance in relation to the estimates of all the structural
state components (displacements u, velocities u̇, and accelerations ü). As exemplary results,
the time histories of the acceleration estimates for the first story are compared in Figure 2,
to illustrate the difference between the filters outcomes. When provided with an inaccurate
initial process noise covariance matrix, it is reported that the error in ü1 given by the EKF
does not decrease in 40.96 s. In contrast, the AEKF provides an error in ü1 that diminishes
to nearly zero within 10 s, with the estimation remaining consistently convergent with the
true value thereafter.

Regarding the estimation of the stiffness, as shown in Figure 3 the traditional EKF
performs poorly compared to the AEKF, when an inappropriate process noise covariance is
provided. In the EKF, the estimation of the stiffness shows negligible changes and maintains
a significant bias away from the true value. In contrast, the AEKF leads to an estimation of
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stiffness that converges to the true value within 10 s, and further reduces the error over the
remaining time.

Figure 2. Scenario 1. Comparison of estimations provided by (left) EKF and (right) AEKF.

The initial process noise covariance Q0 is set as diagonal, with entries respectively
referring to the story displacements, velocities, and acceleration, and to the interstorey
stiffness. The matrix Qfinal reads:
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Qfinal =



9× 10−12 1× 10−11 −3× 10−11 −4× 10−11 −8× 10−9 −1× 10−8 −2
1× 10−11 2× 10−11 −4× 10−11 −7× 10−11 −1× 10−8 −2× 10−8 −3
−3× 10−11 −4× 10−11 3× 10−10 4× 10−10 2× 10−8 4× 10−8 5
−4× 10−11 −7× 10−11 4× 10−10 7× 10−10 4× 10−8 7× 10−8 9
−8× 10−9 −1× 10−8 2× 10−8 4× 10−8 7× 10−6 1× 10−5 2× 103

−1× 10−8 −2× 10−8 4× 10−8 7× 10−8 1× 10−5 2× 10−5 2× 103

−2 −3 5 9 2× 103 2× 103 3× 1011


7×7

,

which is no longer diagonal, and the values of the off-diagonal elements do not result to be
negligible compared to the diagonal ones. Further research on more complex structures is
required to understand the influence of a non-diagonal Qk matrix on the filter outcomes.

Figure 3. Scenario 1. Comparison of stiffness estimations and relevant errors, as provided by (left)
EKF and (right) AEKF.

Figure 4 shows the time evolution of Q77 (in log form) during tuning, to report
that it fluctuates around a magnitude of 1011 (N/m)2. Despite the true stiffness being
1.4× 109 N/m, and the expectation that the process noise covariance of stiffness would
have a high magnitude, it remains challenging to tune Q77 to a higher degree of accuracy.

Figure 4. Scenario 1. Time evolution of the process noise covariance term Q77 related to the structural
stiffness.
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3.2. Scenario 2: Multiple Stiffness Estimation

In this case, the shear building is assumed to feature different interstorey stiffness
values, so that: k1 = 1.4× 109 N/m and k2 = 1× 109 N/m. The initial guesses of stiffness
are chosen to be significantly different from the true values: k1,0 = 1 × 109 N/m and
k2,0 = 1.6× 109 N/m. As shown in Figure 5, although it takes about 30 s for k1 and k2
to converge to the true values, the final estimations exhibit high accuracy and stability.
This demonstrates that the AEKF can effectively update the structural model even when
multiple structural parameters are unknown.

Figure 5. Scenario 2, AEKF results. Estimation of the stiffness terms k1 and k2, relevant error evolution,
and process noise covariance terms tuning.

3.3. Scenario 3: Multiple Stiffness Estimation in the presence of a Damage Event

To testify that the AEKF can operate under more complex conditions and detect
damage, the stiffness k1 of Scenario 2 is reduced to half at 20 s, so that a damage occurring
on the first interstorey in allowed for. As shown in Figure 6, the stiffness estimation reacts
quickly to the sudden change of k1, and it takes approximately 10 s for the estimations of
both k1 and k2 to converge again to the correct values.

These further results indicate that, as an online SHM method, the adtaptive EKF can
detect structural changes and respond promptly by updating the structural parameters.
Results of the same quality, even if not shown here for brevity, cannot be obtained with
the EKF.
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Figure 6. Scenario 3, AEKF results. Estimation of the stiffness terms k1 and k2, relevant error
evolution, and process noise covariance terms tuning in the presence of a damage on the first
interstorey occurring at t = 20 s.

4. Discussion

The adaptive extended Kalman filter has been proposed to avoid issues related to the
setting of the process noise covariance matrix. By automatically tuning all its entries thanks
to the innovation sequence, a significantly improvement of the accuracy of state and stiffness
estimations has been achieved. The filter has also demonstrated a good performance in
multi-parameter estimation, allowing for the updating of structural parameters related
to the stiffness, possibly mimicking the presence of damage even in the absence of direct
measurements.

Future research will focus on developing methods to improve the stability and ac-
curacy of the estimation of the process noise covariance. Moreover, a procedure to set
the most efficient forgetting factor α will be proposed with the aid of machine learning
algorithms. Ultimately, this online SHM method will be enhanced using high-performance
computing, to achieve real-time SHM on high-dimensional structures.
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Appendix A

The dynamics of the structural system shown in Figure 1 is governed by the following
equation [21]:

Mü + D(t)u̇ + K(t)u = F(t), (A1)

where: t is time; M, D, K are the mass, damping and stiffness matrices, respectively; u, u̇, ü
are the displacement, velocity and acceleration vectors, respectively; F is the external load
vector.

Within each time interval [tn−1 tn], the time marching procedure can be split on its
own, into a prediction stage:

ũk = uk−1 + ∆t u̇k−1 + ∆t2
(

1
2
− β

)
ük−1

˙̃uk = u̇k−1 + ∆t(1− γ)ük−1,
(A2)

an (explicit) integration stage:

ük = M−1(Fk −Dk−1 ˙̃uk −Kk−1ũk). (A3)

and a final correction stage:
uk = ũk + ∆t2βük

u̇k = ˙̃uk + ∆tγük,
(A4)

where: ∆t = tn − tn−1 is the time step size (constrained due to algorithmic stability); β and
γ are algorithmic parameters, see [22].

The nonlinear function f in Equation (3) for the structural state can be derived from
the equations above, to obtain:

zk = Akzk−1 + bk (A5)
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where:

Ak =



I− β∆t2M−1Kk−1 ∆tI− β∆t2M−1(Dk−1 −β∆t2M−1(∆t2(1/2
+∆tKk−1) −β)Kk−1 + ∆t(1

−γ)Dk−1) + ∆t2(1/2
−γ∆tM−1Kk−1 I− γ∆tM−1(Dk−1 −γ∆tM−1(∆t2(1/2

+∆tKk−1) −β)Kk−1 + ∆t(1
−γ)Dk−1) + ∆t(1− γ)I

−M−1Kk−1 −M−1(Dk−1 −M−1(∆t2(1/2− β)Kk−1
+∆tKk−1) +∆t(1− γ)Dk−1)


bk =

 β∆t2M−1Fk
γ∆tM−1Fk

M−1Fk



(A6)

being I the unit matrix.
As far as the function of stiffness is concerned, a random walk is simply assumed to

provide:
zk,stiffness = zk−1,stiffness. (A7)
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