

Eng. Proc. 2024, 6, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/engproc

Proceeding Paper

Robosim: Design, Implementation, and Applications of a Line

Follower Robot Simulator †

Samarth Godara

ICAR-Indian Agricultural Statistics Research Institute, New Delhi,110012, India;

sgodara@cs.iitr.ac.in or samarth.godara@icar.gov.in
† Presented at the 11th International Electronic Conference on Sensors and Applications (ECSA-11), 26–28

November 2024; Available online: https://sciforum.net/event/ecsa-11.

Abstract: Current line-follower-robot simulation tools often lack the ability to accurately replicate

real-world conditions, making them ineffective for testing and optimizing algorithms and inacces-

sible for educational use. In this scenario, the present study introduces Robosim, a comprehensive

line follower robot simulator that mimics physical dynamics, allowing users to develop, test, and

refine control algorithms in a virtual environment. The developed Robosim simulator accepts input

in the form of a floor map, which represents the environment in which the robot operates. The map

is provided in a structured text format, such as a matrix or grid. Each element in the matrix corre-

sponds to a specific type of terrain or path, with different characters or numbers representing dif-

ferent features. The Robosim simulator comprises key modules, including Map Reader for loading

the floor map into a 2D array, Robot Initialization for setting start coordinates, Sensor Simulation

for environmental sensing, and Robot Movement for executing control algorithms by adjusting co-

ordinates. Users can implement custom algorithms for testing, with the Position Display module

showing the robot’s location on the map. The proposed software is a very lightweight simulator

designed in C++, which makes it easy to use in computationally restricted environments. Moreover,

the computer program, along with sample map files, is freely available for download at

https://github.com/Samarth-Godara/Robosim_v1. The simulator is a versatile tool that can be uti-

lized in a variety of settings. It can be used in educational institutions for teaching robotics and

control systems, in research labs for developing and testing advanced robotic algorithms, and in the

robotics industry for prototyping and refining line follower robots before physical deployment. Ad-

ditionally, its user-friendly interface and comprehensive features make it an intriguing tool for hob-

byists and enthusiasts to explore and learn about robotic systems.

Keywords: line follower robot; robotic simulation; virtual environment; path optimization;

open-source simulator

1. Introduction

Line follower robots are widely used in various domains for efficient problem-solv-

ing. In manufacturing, they automate material transport and streamline production lines

[1]. In warehouses, these robots enhance inventory management by navigating prede-

fined paths. Additionally, in education and research, they serve as practical tools for

teaching robotics and developing advanced control algorithms [2].

In this scenario, there is a growing need for more simulation tools for line-follower

robots to enhance the development and testing of control algorithms. Lightweight tools

are particularly essential to ensure accessibility and efficiency in various applications.

Open-source simulators can greatly benefit the community by fostering collaboration and

innovation. Such tools would bridge the gap between theoretical concepts and practical

implementation. Robosim addresses these needs by providing a comprehensive, light-

weight, and open-source solution.

Citation: Godara, S. Robosim:

Design, Implementation, and

Applications of a Line Follower

Robot Simulator. Eng. Proc. 2024, 6,

x. https://doi.org/10.3390/xxxxx

Academic Editor(s): Name

Published: 26 November 2024

Copyright: © 2024 by the author.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Eng. Proc. 2024, 6, x FOR PEER REVIEW 2 of 8

In the past, numerous simulators have been developed to model the behavior of line

follower robots, but many of these systems are limited in their ability to simulate physical

dynamics accurately. According to [3], most conventional line follower simulators lack

the capability to replicate real-world conditions such as uneven terrain, varying surface

materials, or sensor noise, which are critical for testing control algorithms under practical

scenarios. In educational settings, such simulators often fail to provide students with an

authentic understanding of robot-environment interactions, limiting the scope of learning

[4].

Moreover, existing simulation tools tend to be computationally demanding, restrict-

ing their use in resource-limited environments. For example, the popular V-REP simula-

tor, as discussed by [5], offers comprehensive features for robotic simulation but is unsuit-

able for devices with limited processing power due to its high computational cost. This

restricts the accessibility of such tools to high-end systems, thus limiting their use in edu-

cational institutions, particularly in regions where resources are scarce.

To address these limitations, the Robosim simulator introduces a novel approach by

offering a lightweight, easy-to-use platform designed in C++. Unlike its predecessors, Ro-

bosim effectively simulates the physical dynamics of a line follower robot, making it suit-

able for algorithm development, testing, and optimization in virtual environments. The

use of a matrix-based map input allows users to model various terrains and paths, offering

flexibility in designing simulation environments. Furthermore, it is noted by various stud-

ies that the ability to simulate different terrains is crucial for developing more adaptive

and robust algorithms [6].

In addition to its realistic simulation capabilities, Robosim’s design allows for effi-

cient performance in computationally restricted environments, making it accessible for

use on low-end hardware such as older computers or embedded systems. This feature is

especially valuable for educational institutions and research labs with limited computa-

tional resources. Moreover, in the study, the Robosim simulator is validated by testing it

with six different map configurations, each containing a varying number of stations. An

AI-based algorithm was used to navigate the maps, and the scanning time for each was

recorded. Furthermore, the computer program of the Robosim simulator, along with sam-

ple map files, is freely available for download at https://github.com/Samarth-Godara/Ro-

bosim_v1. To assist researchers in using the simulator, we have recorded a demonstration

video, which is available at the repository link.

Overall, robotic simulators have become a valuable tool in education, allowing stu-

dents to engage in hands-on learning without the need for physical hardware. In this sce-

nario, Robosim, with its easy-to-understand interface and robust simulation capabilities,

is particularly well-suited for teaching robotics and control systems. By allowing students

to load custom maps and develop their own control algorithms, Robosim offers a flexible

platform for experimentation.

2. Methodology

The methodology for the development and implementation of the Robosim simula-

tor is divided into six key components (Figure 1). These components are designed to ac-

curately simulate the physical dynamics of a line follower robot, while maintaining a light-

weight structure to ensure usability in computationally restricted environments. The Ro-

bosim simulator is developed in C++ and consists of the following modules. To ensure the

reproducibility of this research, the complete code for each of the mentioned modules is

available at: https://github.com/Samarth-Godara/Robosim_v1.

Eng. Proc. 2024, 6, x FOR PEER REVIEW 3 of 8

Figure 1. Methodology for the development and implementation of the Robosim simulator.

1. Map Reader Module: is responsible for loading the line follower robot’s environment.

The environment is represented as a grid or matrix where each element corresponds to

a specific terrain or path. The map is provided in a structured text format, with different

characters or numbers representing various terrain features such as paths, obstacles,

and starting/ending points. In this step, first, the map file is loaded from the disk and

read into a 2D array. Later, each element of the 2D array is interpreted according to its

value, allowing for different types of terrain (e.g., path, obstacle) to be simulated. This

module ensures that the entire map is parsed and ready for the robot’s navigation.

2. Robot Initialization Module: initializes the robot’s starting position on the map, ensur-

ing that the robot’s coordinates align with a valid starting point as defined in the map.

The robot’s movement parameters, such as speed and direction, are also initialized

within this module.

3. Sensor Simulation Module: mimics the behavior of sensors used in a physical line fol-

lower robot, such as infrared sensors. These sensors detect the path ahead and provide

feedback to the control algorithms. The sensors check the neighboring grid cells to de-

termine whether the robot should continue straight, turn, or stop. The sensor checks

the adjacent cells in the direction of movement and provides feedback on whether the

robot is on a valid path (e.g., on the line or near obstacles).

4. Robot Movement Module: is responsible for executing the control algorithms that dic-

tate the robot’s movement on the map. Based on the sensor feedback, the robot adjusts

its position on the grid by moving forward, turning left, or turning right. This module

also ensures that the robot avoids obstacles and stays on the designated path. In this

step, the key operations include processing the feedback from the sensors, adjusting

the robot’s coordinates according to the control logic and ensuring that the robot does

not move out of bounds or into obstacles.

5. Position Display Module: visually represents the robot’s current position on the map.

This is done by outputting the robot’s coordinates and displaying the corresponding

grid. The map is updated in real-time as the robot moves, providing a visual represen-

tation of its trajectory.

6. Custom Algorithm Integration: Robosim allows users to integrate their own custom

algorithms for controlling the robot’s movement. Users can implement advanced con-

trol strategies and test them in the simulated environment. The modular design of the

simulator enables easy integration of new algorithms.

3. Experiments and Results

Figure 2 provides a step-by-step overview of key features of the Robosim simulator.

Figure 2a depicts the initial screen of the Robosim interface upon startup. Figure 2b shows

the prompt where the user is required to define the robot’s initial position on the map.

Figure 2c illustrates the graph generated by Robosim’s AI-based navigational lagorithm,

which corresponds to the floor map that the robot will traverse. Figure 2d captures the

Eng. Proc. 2024, 6, x FOR PEER REVIEW 4 of 8

simulator requesting the user to select the destination station for the robot; upon selecting

station 5, Robosim displays a detailed list of junctions and corresponding turns required

to navigate the path. Finally, Figure 2e demonstrates the simulator prompting the user to

input the next traversal command for the robot’s movement. This sequence outlines Ro-

bosim’s user interaction process, from initializing the robot’s position to navigating sta-

tions and inputting movement commands, providing a clear representation of its opera-

tional flow.

(a) (b)

(c)

(d) (e)

Figure 2. Key Interface Features of the Robosim Simulator, (a) The opening screen of the Robosim

simulator, (b) User prompt for defining the robot’s initial position, (c) Graph generated by Robosim,

corresponding to the floor map, (d) Simulator requesting the destination station and displaying

junctions and turns for station 5, (e) User prompt for inputting the next traversal command.

To evaluate the performance and effectiveness of the Robosim simulator, a series of

experiments were conducted using the AI-based navigational algorithm and multiple cus-

tom map files (Figure 3). The input map file, structured as a grid, contains various path

types and obstacles designed to challenge the robot’s navigation. The key goal of these

experiments was to test the robot’s ability to follow the designated path, avoid obstacles,

Eng. Proc. 2024, 6, x FOR PEER REVIEW 5 of 8

and reach the destination using different control algorithms. The Robosim simulator, by

default, includes three distinct line-following algorithms, each designed to navigate the

robot through a predefined matrix-style map, simulating different terrain types and ob-

stacles. The three algorithms include:

1. Left Path Algorithm: This algorithm prioritizes following the left edge of the path at

intersections or decision points.

2. Right Path Algorithm: In contrast, this algorithm prioritizes following the right edge

of the path, behaving similarly to the Left Path Algorithm but with a mirrored deci-

sion-making process.

3. A.I. based Localization and Navigational Algorithm: This advanced algorithm uti-

lizes sensor feedback and heuristic decision-making to localize the robot within the

environment and select the optimal path, accounting for both left and right turns

based on the context. The AI-based algorithm begins by scanning and mapping a

floor-drawn line network using an m-graph generator, which captures the layout as

a graph of stations and junctions. Upon receiving a destination input, the Pruned-

BFS algorithm efficiently calculates the optimal path from the source to the target

station, minimizing redundant paths. The robot then uses this path, turning at junc-

tions as required, to navigate toward the destination. This process ensures efficient

indoor navigation with minimal memory usage, leveraging the m-graph’s concise

representation. Detailed information regarding the algorithm can be obtained from

[7].

Figure 3a–f presents six maps used for robust validation of the simulator, each fea-

turing progressively increasing complexity. Moreover, Figure 4 presents the data for the

Robosim simulator’s performance using the AI-based algorithm across various maps with

different numbers of stations. The details regarding the AI-based algorithm used in the

Robosim can be found in the referenced documentation at: https://github.com/Samarth-

Godara/Robosim_v1.

(a) (b)

(c) (d)

Eng. Proc. 2024, 6, x FOR PEER REVIEW 6 of 8

(e) (f)

Figure 3. Six maps with varying levels of complexity used to validate the performance and robust-

ness of the Robosim simulator. In the maps, the symbol ‘#’ denotes floor walls and obstacles, while

‘.’ represents the lines drawn on the floor.

Figure 4. Results of Robosim’s Performance on Different Maps.

From the obtained results, it is noted that maps a to c show a steady increase in the

number of stations, which correlates with a gradual increase in scanning time taken by

the AI-based navigational algorithm. This suggests that as the number of stations in-

creases, the AI-based algorithm takes longer to process the map due to the increased com-

plexity of navigating through more decision points (stations). Furthermore, between maps

c (6 stations, 94 s) and d (7 stations, 141 s), there’s a noticeable jump in scanning time. This

could be due to either the increased complexity in the layout of stations or additional

challenges (e.g., obstacles or tighter paths) that make scanning slower despite a small

change in station count. Interestingly, map e also has 7 stations but the scanning time is

slightly shorter (129 s) than map d. This could indicate that the layout of the stations in

map e was simpler for the AI algorithm to navigate, perhaps with fewer obstacles or more

direct paths between stations. Map f has 17 stations, and the scanning time spikes to 247

s, which is expected given the much larger number of stations. The exponential increase

in scanning time suggests that the complexity of the map significantly affects the perfor-

mance of the algorithm, especially as the number of stations grows larger.

The AI-based algorithm shows a proportional relationship between the number of

stations and the scanning time. However, the map layout and other factors (like obstacles

or path structure) also impact the scanning time, as seen in the differences between maps

d and e, both with 7 stations but different scanning times. The larger jump in time for map

Eng. Proc. 2024, 6, x FOR PEER REVIEW 7 of 8

f highlights the potential challenge in scaling the algorithm to handle significantly more

complex networks efficiently. The correlation between the number of stations and the

scanning time is 0.98, indicating a strong positive relationship. This suggests that as the

number of stations increases, the scanning time also increases almost proportionally.

4. Discussion

In the performed experiments, it is noted that the robot demonstrated excellent

adaptability, successfully choosing between left and right turns at intersections based on

the optimal route to the destination. It efficiently avoided obstacles, re-routing itself when

necessary to bypass blocked paths without getting stuck. The robot reached the destina-

tion consistently in both simple and complex environments, even when the path con-

tained multiple branches and intersections.

The Robosim simulator, while effective, has several limitations. It lacks support for

simulating sensor noise and environmental variations, such as uneven (elevated) terrain,

which can impact algorithm testing. Additionally, it currently supports only line-follower

robots, limiting its applicability to other types of robots or more complex control systems.

Finally, due to its simplified navigation model, Robosim’s performance may degrade with

highly complex maps (including cycles in the map) or an increased number of stations.

The future scope of the Robosim simulator includes several key enhancements. Ex-

panding its capabilities to simulate real-world sensor noise, terrain (elevation) variations,

and environmental factors would improve its realism. Support for additional robot types

and more advanced control algorithms, including multi-robot simulations, could broaden

its applicability. Incorporating real-time data feedback and visualization features would

enhance user interaction. Finally, optimizing the system for larger and more complex en-

vironments could improve scalability, making Robosim suitable for testing more sophis-

ticated robotics systems.

5. Conclusions

This study introduced and evaluated ‘Robosim’, a lightweight and flexible simulator

for testing and optimizing line follower robot algorithms. Robosim offers a realistic virtual

environment that mimics the physical dynamics of a line-following robot and accepts a

matrix-style map as input, allowing for the simulation of various path and obstacle con-

figurations. The A.I.-based Localization and Navigational Algorithm was tested within

the simulator through a series of experiments. The simulator was tested on six different

maps, each exhibiting varying complexities and station configurations. The results indi-

cate a strong positive correlation (~0.98) between the number of stations and scanning

time, with complexity and layout also affecting performance. Notably, maps with the

same number of stations show varied scanning times, highlighting the influence of obsta-

cles and path structures on algorithm efficiency. Robosim’s versatility, ease of use, and

adaptability make it an ideal tool for educational purposes, research labs, and robotics

development environments. By providing a platform for testing and refining algorithms,

Robosim bridges the gap between theoretical development and practical deployment, of-

fering valuable insights for the design and optimization of line-following robots. Future

work will focus on enhancing the simulator with more complex terrain types, real-time

feedback features, and support for additional robot models to further broaden its appli-

cation scope.

Supplementary Materials: The following supporting information can be downloaded at:

www.mdpi.com/xxx/s1, Figure S1: title; Table S1: title; Video S1: title. The supporting information

can be downloaded at: https://github.com/Samarth-Godara/Robosim_v1, https://github.com/Sa-

marth-Godara/pony.

Author Contributions: The research was conducted by S.G., Scientist at ICAR-Indian Agricultural

Statistics Research Institute, New Delhi, India. S.G. was responsible for the conceptualization, meth-

odology, software development, validation, formal analysis, investigation, resources, data curation,

Eng. Proc. 2024, 6, x FOR PEER REVIEW 8 of 8

original draft preparation, review and editing, and visualization. All tasks related to this research

were completed by S.G., and he has read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement:

Informed Consent Statement:

Data Availability Statement: “Robosim_v1” at https://github.com/Samarth-Godara/Robosim_v1.

Acknowledgments: We would like to express our sincere gratitude to Geeta Sikka (Head, Depart-

ment of Computer Science, National Institute of Technology Delhi, New Delhi, India), Rajender

Parsad (Director, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India), and Su-

deep Marwaha (Head, Division of Computer Applications, ICAR-Indian Agricultural Statistics Re-

search Institute, New Delhi, India) for their invaluable guidance and support throughout the course

of this research.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Hynynen, J. Using artificial intelligence technologies in production management. Comput. Ind. 1992, 19, 21–35.

2. Miglino, O.; Lund, H.H.; Cardaci, M. Robotics as an educational tool. J. Interact. Learn. Res. 1999, 10, 25–47.

3. Donà, R.; Ciuffo, B. Virtual testing of automated driving systems. A survey on validation methods. IEEE Access 2022, 10, 24349–

24367.

4. Dietz, G.; Chen, J.K.; Beason, J.; Tarrow, M.; Hilliard, A.; Shapiro, R.B. Artonomous: Introducing middle school students to

reinforcement learning through virtual robotics. In Proceedings of the 21st Annual ACM Interaction Design and Children Con-

ference, Braga, Portugal, 27–30 June 2022; pp. 430–441.

5. Rohmer, E.; Singh, S.P.; Freese, M. V-REP: A versatile and scalable robot simulation framework. In Proceedings of the 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1321–1326.

6. Peng, X.B.; Berseth, G.; Van de Panne, M. Terrain-adaptive locomotion skills using deep reinforcement learning. ACM Trans.

Graph. 2016, 35, 1–12.

7. Godara, S.; Sikka, G.; Parsad, R.; Marwaha, S.; Faiz, M.A.; Bana, R.S. Pony: Leveraging m-graphs and Pruned-BFS Algorithm to

Elevate AI-Powered Low-Cost Self-Driving Robotics. IEEE Access 2024, 12, 134185–134197. https://doi.org/10.1109/AC-

CESS.2024.3462102.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

