

UNIVERSIDAD POLITÉCNICA DE MADRID

FREQUENCY ANALYSIS AND TRANSFER LEARNING ACROSS DIFFERENT BODY SENSOR LOCATIONS IN PARKINSON'S DISEASE DETECTION USING INERTIAL SIGNALS

Alejandro Rey-Díaz, Iván Martín-Fernández, Rubén San-Segundo, **Manuel Gil-Martín**

Index

02 03 01

Introduction

Materials and Methods

Results and Discussion

()4

Conclusions

Introduction

- Tremor analysis using Deep Learning in different parts of the body for detection of Parkinson's disease and its severity
- Early detection and medical treatment on the first stages of the disease could improve quality of life of the patients
- Use of non-intrusive **wearables** for data collection Previous works
- Hypothesis stating that data received by the thigh sensors are similar to those of the forearms
- 92.4 % accuracy rate using 6.4-second windows of raw data but training and testing with signals from the same subject, not LOSO
- 60.33 ± 1,00 % accuracy rate using LOSO with 3.2-second windows

Introduction

Objectives

Analyse what information is useful for the model performing certain experiments

1. Frequency analysis to obtain the **frequency range** with more **useful information** for PD detection

2. Transfer learning across the sensor locations on different body parts, discussing accuracy rates acquired training with one sensor and testing with another

PD-BIOSTAMPRC21 dataset - 31 subjects Sampling rate of **31,25 Hz Inertial signals**

Inertial signals lumped into Pickle files

[X ch, Y ch, Z ch, X lh, Y lh, Z lh, X ll, Y ll, Z ll, X rh, Y rh, Z rh, X rl, Y rl, Z rl] Right Left Right Chest Left thigh forearm forearm thigh

Labelling

- '1': Control
 - '2': Parkinson

Sensors location

Signal processing

Sliding window segmentation

6

Raw

• 100 time samples (obtained with the sampling rate and 3.2-seconds window)

FFT (Fast Fourier Transform)

- 50 time samples (obtained with half of the sampling rate)
- The number of time samples is equivalent to frequency divisions

Deep Learning Architecture (CNN)

Input layer

(Signals, Samples, Kernel or neurons)

(Number of signals or sensors, Number of windows, Kernel or neurons)

Layer Output form		Param #	Activation function	Characteristics
Input	(None, 15, 50, 1)	-	-	-
Conv 2D	(None, 15, 50, 32)	192	ReLU	$\begin{aligned} \text{Kernels} &= 32\\ \text{Size} &= 1\text{x5} \end{aligned}$
ax Pooling 2D	(None, 15, 25, 32)	0	-	Size = 1x2
Dropout	(None, 15, 25, 32)	0	-	Dropout = 0,3
Conv 2D	(None, 15, 25, 32)	5152	ReLU	$\begin{aligned} \text{Kernels} &= 32\\ \text{Size} &= 1\text{x5} \end{aligned}$
ax Pooling 2D	(None, 15, 12, 32)	0	-	Size = 1x2
Dropout	(None, 15, 12, 32)	0	-	Dropout = 0,3
Flatten	(None, 5760)	0	-	-
Dense	(None, 64)	368704	ReLU	Neurons $= 64$
Dropout	(None, 64)	0	-	Dropout = 0,3
Dense	(None, 2)	130	Softmax	Neurons $= 2$
Output	(None, 2)	-	-	-

Evaluation Methodology

Evaluation metric

Accuracy rate =
$$\frac{1}{N} \sum_{i=1}^{C} P_{ii}$$

with their confidence intervals (CI)

$$\pm 1,96 \cdot \sqrt{\frac{Metric \ rate \cdot (100 - Metric \ rate)}{N}}$$

Results and Discussion

Frequency Analysis

Input la	
----------	--

Sensor	Frequency range (Hz)	Accuracy rate (%)
	0-15	77.46 ± 0.60
A 11	0-5	75.75 ± 0.62
All	5-10	61.87 ± 0.70
	10-15	56.85 ± 0.71
	0-15	73.28 ± 0.64
ch - Chost	0-5	70.34 ± 0.66
cn - Cnest	5-10	53.39 ± 0.72
	10-15	46.80 ± 0.72
	0-15	65.71 ± 0.68
lb - Loft forearm	0-5	65.95 ± 0.68
III - Lett Ioreann	5-10	46.38 ± 0.72
	10-15	44.71 ± 0.72
	0-15	62.90 ± 0.69
11 Loft thich	0-5	62.15 ± 0.70
n - Lett tingti	5-10	50.94 ± 0.72
	10-15	48.45 ± 0.72
	0-15	64.95 ± 0.69
rh Dight foregreen	0-5	63.68 ± 0.69
m - Right Ioleann	5-10	51.49 ± 0.72
	10-15	48.52 ± 0.72
	0-15	64.55 ± 0.69
n Diahtthiah	0-5	65.77 ± 0.69
n - Kight thigh	5-10	56.07 ± 0.71
	10-15	43.69 ± 0.71

1. Similar values of accuracy rates obtained from 0 to 5 Hz to the whole frequency range

Highest energy level occurs at 4 Hz frequency

yer for O to 5 Hz with all the sensors (None, 15, 16, 1)

Transfer learning across different sensor locations **FFT (Fast Fourier Transform)**

- 70

- 65

0 Accuracy rate

- 55

- 50

Heatmap of accuracy rates with confidence intervals on FFT signals

ନ -	72.97 ±0.64	57.73 ±0.71	51.63 ±0.72	62.63 ±0.70	53.93 ±0.72	
년 -	52.71 ±0.72	65.53 ±0.68	52.29 ±0.72	63.57 ±0.69	54.51 ±0.72	
Iraining sensor II	61.20 ±0.70	62.22 ±0.70	64.52 ±0.69	56.57 ±0.71	61.73 ±0.70	
÷-	63.92 ±0.69	64.33 ±0.69	51.01 ±0.72	65.17 ±0.69	50.44 ±0.72	
τ-	49.32 ±0.72	58.78 ±0.71	64.79 ±0.69	49.66 ±0.72	64.04 ±0.69	
	ch	lh	l Test sensor	'n	'n	

1. Best rate is obtained training and testing with the sensor on the same location (principal diagonal)

2. Unlike hypothesised in previous work, there is no transfer of information between the thighs and forearms

3. Evaluating on the sensors located in the same location but opposite sides of the body offer similar tremor information

10

Input layer for 0 to 15 Hz with one sensor (None, 3, 50, 1)

Facility for wearables placement

Conclusions

1. Similar accuracy rates using a frequency range of 0 to 5 Hz. On the left thigh sensor, of 62.15 ± 0.70 %, compared to the full frequency range available (0 to 15.625 Hz), with $62.90 \pm 0.69\%$

2. There is a relationship on a specific sensor and the one in the opposite body part. Training with the left forearm sensor and evaluating with the right forearm: 63.57± 0.69 %, while training and evaluating with the right forearm: 65.17 ± 0.69 %

3. Right forearm sensor also offers a high accuracy rate while evaluating the model with the chest sensor

Future studies

- 1. Work with new datasets with a higher number of subjects to certify the results
- 2. Developing an interactive wearable application to build real time systems to those who may need those
- 3. Create a regression system to estimate the Unified Parkinson's Disease Rating Scale (UPDRS) from tremor signals

Conclusions

UNIVERSIDAD POLITÉCNICA DE MADRID

THANK YOU FOR YOUR ATTENTION

Alejandro Rey-Díaz, Iván Martín-Fernández, Rubén San-Segundo, **Manuel Gil-Martín**

