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Abstract: The identification of defects in apple leaf specimens is crucial for mitigating crop loss and 

maintaining harvest quality. This study investigates the applicability of an intensity detection sim-

ulation integrated optical cross-sectional modeling method for detecting defective apple leaf speci-

mens. The technique utilizes a customized 840 nm optical coherence tomography (OCT). The 

method involved using a peak-intensity detection technique to analyze OCT signal intensity varia-

tions in multi-layered leaf structures. Results demonstrate potential of the method to identify mor-

phological differences between leaf specimens from healthy and infected trees and, specifically, 

healthy leaf specimens from infected trees. Implementing this method enables cost savings through 

timely interventions to reduce the impact of leaf defects on crop production. 

Keywords: Spectral Domain Optical Coherence Tomography; Defective Apple Leaves; Intensity  
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1. Introduction 

The apple (Malus domestica) is a globally significant fruit crop, widely cultivated for 

its high nutritional value and diverse uses, including but not limited to fresh consump-

tion, processed products, and nutritional supplements. Its broad range of uses and health 

benefits make apple production economically significant in the global agricultural sector. 

Maintaining the health of apple trees is essential for sustaining both crop quality and 

yield, as apples are one of the leading contributors to global fruit production. Currently, 

apple ranks as the third most produced fruit worldwide as shown in Figure 1 [1]. 

The defectiveness of apple leaf specimens can cause significant crop loss and reduc-

tion of harvest in susceptible cultivars [2]. Most of these leaf defects frequently occur due 

to various apple diseases [3]. The leaf defects cause discoloration and leaf loss, resulting 

in the early dropping of fruits. Therefore, these leaf defects should be identified at an early 
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stage and controlled to maintain apple yield. With the increasing demand for fruit quality 

assurance and growing interest in fruit security, non-destructive, accurate, cost effective, 

and reliable inspection methods have gained strong demand and attention in agriculture. 

Effectively controlling leaf defects requires prompt detection methods that can identify 

symptoms in their early stages. 

 

Figure 1. Global fruit production in 2022, showing the top 10 varieties in Million Metric Tons (MMT) 

(Adapted from [4]). 

Initial identification of plant diseases is mainly based on direct manual visual obser-

vation. However, it is often subjective and inaccurate, leading to improper management. 

Current Early Detection Technologies (EDTs) such as Polymerase Chain Reaction (PCR) 

and real-time PCR are effective for identifying pathogens through DNA amplification [5]. 

Despite that, they require prior knowledge of pathogen sequences and are influenced by 

factors such as DNA extraction quality and reagent conditions. Although DNA sequenc-

ing is important for pathogen detection, it is limited by cost, time, technical requirements, 

and infrastructure. Spectroscopy methods, such as hyperspectral imaging and Near-Infra-

red Spectroscopy (NIR), can detect disease-specific signatures but are hindered by com-

plexity and expense. 

Other methods include immunological techniques such as Immunofluorescence As-

say (IFA) and Enzyme-Linked Immunosorbent Assay (ELISA), which detect pathogen-

specific antibodies or antigens, although they have limitations in sensitivity and accuracy. 

Lateral Flow Immunoassay (LFIA) offers fast, field-friendly testing but lower precision, 

while microscopy allows detailed examination but is time-consuming and equipment-in-

tensive. Advanced techniques such as Flow Cytometry (FCM) and Fluorescence In Situ 

Hybridization (FISH) provide high sensitivity and multi-parameter analysis. However, 

they face challenges such as autofluorescence, photobleaching, and high costs [6]. Sensor-

based technologies, including remote sensing, monitor environmental and physiological 

conditions, though they may not detect diseases at the microscopic level [7]. Biomarkers 

indicate disease stress but may not offer real-time detection. 

Plant inspection technologies that enable in vivo imaging have commonly included 

Magnetic Resonance Imaging (MRI), X-rays, Positron Emission Tomography (PET), and 

confocal microscopy [8,9]. However, their applicability has been limited due to the low 

resolution and slow image acquisition speed. Table 1 summarizes a comprehensive com-

parison of several plant disease detection methods. 
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Table 1. Current Available Methods for Detecting Plant Diseases Induced by Pathogens. 

Techniques Key Features Limitations 

Direct visual examina-

tion 

Easy to perform; Special equip-

ment is not required. 

Limited accuracy; Subjectiv-

ity; Inability to identify 

early-stage symptoms ; Re-

lies solely on visible symp-

toms that manifest late in 

the disease progression 

DNA Sequencing 
Precise pathogen detection; Disease 

management capabilities 

Limited by cost and time; 

Requires technical expertise. 

PCR 

Widely used method; Portable; 

Easy and efficient technique with 

quick results; Low cost 

Prior knowledge of patho-

gen DNA required; influ-

enced by DNA extraction, 

inhibitors, and reagent con-

ditions. 
Real-time PCR 

PCR with real-time detection; Early 

detection  

ELISA 
Visual color change for identifica-

tion; Low cost 
Low sensitivity to bacteria. 

IFA 
High sensitivity; Visualizes the tar-

get distribution 
Subject to photobleaching. 

NIR 

Captures functional groups and 

compounds in the visible and near-

infrared region 

High cost and complexity 

Hyperspectral Imaging Identify disease-specific signatures 
Complex applications; Ex-

pensive technology 

FISH High sensitivity 
Autofluorescence; Photo-

bleaching 

FCM 
Multi-parameter measurement; 

Rapid method 

High cost; Produce over-

whelming data 

LFIA Fast and field-friendly testing 

Lower accuracy compared 

to other molecular tech-

niques 

Microscopy (Light and 

Electron) 

Offers a comprehensive examina-

tion of plant tissues 

Time-consuming; Special 

equipment required. 

Sensor-based Technolo-

gies 

Remote monitoring of environmen-

tal and physiological conditions 

Not applicable at the micro-

scopic level 

Biomarkers 
Indicate disease stress to monitor 

health conditions. 
No real-time detection 

MRI 

Offer in vivo imaging for plant in-

spection. 

Comparatively limited reso-

lution for identifying finer 

details of plant disease 

symptoms; Longer image 

acquisition times; Inherent 

restrictions 

Confocal Microscopy 

PET 

X-rays 

Abbreviations: Deoxyribonucleic Acid (DNA), Enzyme-Linked Immunosorbent Assay (ELISA), Flu-

orescence In Situ Hybridization (FISH), Flow Cytometry (FCM), Immunofluorescence Assay (IFA), 

Lateral Flow Immunoassay (LFIA), Magnetic Resonance Imaging (MRI), Near-Infrared Spectros-

copy (NIR), Polymerase Chain Reaction (PCR), Positron Emission Tomography (PET), and X-radia-

tion (X-rays). 
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These potential challenges highlight the rising demand for the development of a non-

invasive optics-incorporated, high-resolution imaging method, which generates real-time 

visualizations to detect plant diseases in the agriculture sector. 

Among growing trends in imaging techniques, OCT is robust imaging technique ca-

pable of capturing both Two-Dimensional (2D) and Three-Dimensional (3D) images in 

micrometer scale resolutions [10]. The significant imaging depth, high resolution, high 

sensitivity, and rapid acquisition speed of OCT make it an effective technique, extensively 

used in the past decade for identifying plant diseases, monitoring growth, and assessing 

microbiological parameters [11–15]. Moreover, several reports have revealed the success-

ful applications of OCT for the morphological analysis of plant tissues, highlighting its 

utility in plant disease detection [16–19]. 

The aim of this study was to explore the morphological differences between healthy 

and defective apple leaf specimens at an initial stage. An intensity detection simulation 

integrated with optical cross-sectional modeling, known as OCT, was developed as a non-

destructive imaging model that provides cross-sectional and depth-resolved quantitative 

information. 

2. Materials and Methods 

2.1. Preparation of Plant Materials for Disease Detection 

The apple leaf specimens used in the experiment were collected from apple orchards 

in Sangju, Gyeongbuk Province, Korea. To investigate morphological variations, the spec-

imens were collected at random from both healthy and infected trees. The experiment was 

conducted within 2 h of sample collection to preserve the biological integrity of the spec-

imens. 

2.2. Optical Cross-Sectional Modeling Method 

The schematic representation of the custom Spectral Domain OCT (SD-OCT) system 

for optical cross-sectional modeling is illustrated in Figure 2. The system uses a broadband 

laser light source (λo = 840 nm, Exalos Ltd., Switzerland) with a Full Width at Half Maxi-

mum (FWHM) of 65 nm. The laser beam is divided into reference and sample paths using 

a 50:50 optical fiber coupler. A galvanometer-based optical scanner is used for the trans-

verse scanning of leaf samples. Backscattered signals from both the sample and reference 

paths are interfered with at the coupler and detected by a 4096-pixel line scan camera 

(spL4096-140 km, Basler, Germany). 

To distribute the light components at the detection end, a transmission-type diffrac-

tion grating with a spatial frequency of 1200 lp/mm (Wasatch Photonics, USA) and a nom-

inal diffraction angle of 46.05° is used. A wavenumber linearization technique is applied 

to enhance axial resolution and signal sensitivity, thereby improving the Signal-to-Noise 

Ratio (SNR) and correcting for any distortion in the Point Spread Function (PSF). During 

the scanning, cross-sectional images of the specimens are captured, focusing on healthy 

samples from unaffected trees, seemingly healthy leaves from infected trees, and defective 

samples from infected trees. 
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Figure 2. The schematic of the optical cross-sectional modeling method. 

2.3. Intensity Detection Simulation Technique 

The intensity detection simulation technique was primarily developed based on the 

OCT signal intensity from the amplitude scan (A-scan) depth profile, acquired through 

the multi-layered structure and variations in the absorption coefficient. Figure 3 shows the 

comparison of amplitude depth scans obtained from healthy (Figure 3a) and defective 

(Figure 3b) apple leaf specimens. The data from each blue and red peak correspond to the 

characteristics of the individual layers of the leaf specimens. The indicated ΔH specifies 

the peak height information of healthy layers, while ΔW indicates the peak width infor-

mation of these layers. 

 

Figure 3. The graphical description for intensity detection simulation technique. 

For the A-scan depth profiles, a refractive index of 1.42 was used. An automated in-

tensity detection algorithm, developed with C++, was implemented to identify corre-

sponding intensity positions along the depth axis in all collected 2D OCT images. Due to 

the physical characteristics of the leaf samples, the 2D OCT images were initially unflat-

tened. During the inspection phase, a cropped window containing 50 intensity signals 

(OCT axial intensity lines) was applied in real-time to establish the Region of Interest 

(ROI). The algorithm systematically detected the peak intensity in each A-scan line. The 

identified maximum intensity positions from all 50 A-scan lines were then rearranged and 

indexed linearly to create a flattened 2D OCT image. Finally, the A-scan lines within this 
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flattened 2D OCT area were combined and averaged to generate a single average signal 

intensity plot, which is further detailed in the results section. 

3. Results and Discussion 

To characterize the morphological variations of the three leaf categories, cross-sec-

tional images were captured using OCT imaging. Figure 4 compares the models of healthy 

leaves (Figure 4a), seemingly healthy leaves from infected trees (Figure 4b), and defective 

leaves (Figure 4c). The rectangular regions indicate the ROI in the intensity detection sim-

ulation. In healthy specimens, distinct leaf layers are clearly visible (Figure 4a). In contrast, 

the layers appear defective in seemingly healthy specimens from infected trees (Figure 

4b). The third defective leaf category shows further loss of layer detail, with the formation 

of a single merged layer (Figure 4c). 

 

Figure 4. The morphological and depth direction intensity comparison between (a) healthy leaf 

specimens (b) apparently healthy leaf specimens from infected trees, and (c) defective leaf speci-

mens. Depth profile comparison showing signal peak intensity variations and layer information for 

(d) healthy, (e) apparently healthy, and (f) defective leaf specimens. 

Figures 4d-f show a comparative visualization of intensity detection depth profiles 

for healthy, apparently healthy, and defective leaves, revealing significant variations in 

peak intensity and the number of identifiable peaks. In Figure 4d, the depth profile for 

healthy leaf samples shows multiple peaks, with the first peak corresponding to the top 

layer of the leaf. This allows for the identification of three visible layers (layer 1 to layer 

3), showing that the optical properties of healthy leaves facilitate effective imaging and 

analysis. The entire leaf structure can be detected within a depth range of 100 μm, indi-

cating that healthy specimens maintain their structural integrity and optical clarity. In 

contrast, Figure 4e presents the depth profile for apparently healthy leaf specimens, with 

a marked reduction in the number of visible layers. This finding suggests that although 

these leaves appear healthy externally, underlying structural changes may be occurring, 

potentially indicating early stages of infection or stress. The diminishing depth infor-

mation further emphasizes the need for careful monitoring of such specimens, as the loss 

of layer detail could compromise overall leaf health and function. Figure 4f illustrates the 

depth profile of defective specimens, limited to only 25 μm, indicating a significant reduc-

tion in depth range. The profiles show a pronounced merging of the leaf layers into a 

single peak, indicating a loss of distinct structural integrity. This result reinforces the hy-

pothesis that defective leaves show considerable morphological changes due to disease or 

environmental stress, affecting their optical properties and, consequently, their viability. 
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These qualitative and quantitative analyses demonstrate a clear correlation between 

the OCT images and the intensity detection simulation depth profiles. The ability to dis-

tinguish between healthy, apparently healthy, and defective leaf specimens based on 

depth profile characteristics underscores the potential of this method for early detection 

of leaf defects. Implementing this technique in practical settings could enhance the accu-

racy of disease diagnosis in apple orchards, enabling timely interventions that may reduce 

crop loss and improve harvest quality. 

4. Conclusions 

Quantitative and morphological analyses offer significant advantages for diagnostic 

evaluations of plant material defects. This study investigated the capability of an intensity 

detection simulation integrated with an optical cross-sectional modeling method called 

OCT to assess the quality of apple leaf specimens collected from plantations in Korea. The 

depth-direction intensity detections and optical cross-sectional models demonstrated that 

this imaging modality effectively diagnoses and distinguishes defective apple leaf speci-

mens from healthy ones through cross-sectional thickness analysis, a distinction that is 

not possible with visual inspection alone. Thus, the proposed method presents an ideal 

solution for detecting defective leaf specimens, facilitating effective disease management 

in apple cultivation and leading to fruitful outcomes in the agricultural industry. 

Author Contributions: Conceptualization, M.J. and J.K.; methodology, S.H., D.S., and R.E.W.; soft-

ware, D.K., and N.S.K.; validation, R.E.W.; formal analysis, B.N.S.; investigation, R.E.W., M.J., and 

J.K.; resources, U.W., M.J., and J.K.; data curation, S.H., D.S., J.K., and M.J.; writing—original draft 

preparation, R.E.W., N.S.K.; and D.K.; writing—review and editing, H.M., N.S.K., and R.E.W.; vis-

ualization, R.E.W. and N.S.K.; supervision, R.E.W. and U.W.; project administration, R.E.W.; fund-

ing acquisition, U.W., R.E.W., and B.N.S. All authors have read and agreed to the published version 

of the manuscript. 

Funding: This research was supported by the Science and Technology Human Resource Develop-

ment Project, Ministry of Education, Sri Lanka, funded by the Asian Development Bank (Grant No. 

STHRD/CRG/R3/SJ/07), Research grant funded by the University of Sri Jayewardenepura, Sri Lanka 

(Grant No: ASP/01/RE/ENG/2022/86), and Research grants funded by the Sri Lanka Institute of In-

formation Technology, Sri Lanka (Grant Nos. PVC(R&D)RG/2024/13 and PVC(R&D)RG/2024/16). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Dataset available on request from the authors. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Girotto, O.S.; Furlan, O.O.; Moretti Junior, R.C.; Goulart, R.d.A.; Baldi Junior, E.; Barbalho-Lamas, C.; Fornari Laurindo, L.; 

Barbalho, S.M. Effects of Apples (Malus domestica) and Their Derivatives on Metabolic Conditions Related to Inflammation and 

Oxidative Stress and an Overview of by-Products Use in Food Processing. Crit. Rev. Food Sci. Nutr. 2024, 1–32. 

https://doi.org/10.1080/10408398.2024.2372690. 

2. Tamietti, G.; Matta, A. First Report of Leaf Blotch Caused by Marssonina Coronaria on Apple in Italy. Plant Dis. 2003, 87, 1005–

1005. https://doi.org/10.1094/PDIS.2003.87.8.1005B. 

3. Sulaiman, A.; Anand, V.; Gupta, S.; Alshahrani, H.; Reshan, M.S.A.; Rajab, A.; Shaikh, A.; Azar, A.T. Sustainable Apple Disease 

Management Using an Intelligent Fine-Tuned Transfer Learning-Based Model. Sustainability 2023, 15, 13228. 

https://doi.org/10.3390/su151713228. 

4. Fruit: World Production by Type. 2022. Available online: https://www.statista.com/statistics/264001/worldwide-production-of-

fruit-by-variety/ (accessed on 18 September 2024). 

5. Gautam, A.K.; Kumar, S. Chapter 12—Techniques for the Detection, Identification, and Diagnosis of Agricultural Pathogens 

and Diseases. In Natural Remedies for Pest, Disease and Weed Control; Egbuna, C., Sawicka, B., Eds.; Academic Press: Cambridge, 

MA, USA 2020; pp. 135–142 ISBN 978-0-12-819304-4. 

6. Fang, Y.; Ramasamy, R.P. Current and Prospective Methods for Plant Disease Detection. Biosensors 2015, 5, 537–561. 

https://doi.org/10.3390/bios5030537. 



Eng. Proc. 2024, 6, x FOR PEER REVIEW 8 of 8 
 

 

7. Abdhul Rahuman, M.A.; Kahatapitiya, N.S.; Amarakoon, V.N.; Wijenayake, U.; Silva, B.N.; Jeon, M.; Kim, J.; Ravichandran, 

N.K.; Wijesinghe, R.E. Recent Technological Progress of Fiber-Optical Sensors for Bio-Mechatronics Applications. Technologies 

2023, 11, 157. https://doi.org/10.3390/technologies11060157. 

8. Minker, K.R.; Biedrzycki, M.L.; Kolagunda, A.; Rhein, S.; Perina, F.J.; Jacobs, S.S.; Moore, M.; Jamann, T.M.; Yang, Q.; Nelson, 

R.; et al. Semiautomated Confocal Imaging of Fungal Pathogenesis on Plants: Microscopic Analysis of Macroscopic Specimens. 

Microsc. Res. Tech. 2018, 81, 141–152. https://doi.org/10.1002/jemt.22709. 

9. Narvankar, D.S.; Singh, C.B.; Jayas, D.S.; White, N.D.G. Assessment of Soft X-Ray Imaging for Detection of Fungal Infection in 

Wheat. Biosyst. Eng. 2009, 103, 49–56. https://doi.org/10.1016/j.biosystemseng.2009.01.016. 

10. Wijesinghe, R.E.; Kahatapitiya, N.S.; Lee, C.; Han, S.; Kim, S.; Saleah, S.A.; Seong, D.; Silva, B.N.; Wijenayake, U.; Ravichandran, 

N.K.; et al. Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in 

Pre-Clinical Applications. Micromachines 2024, 15, 564. https://doi.org/10.3390/mi15050564. 

11. Saleah, S.A.; Lee, S.-Y.; Wijesinghe, R.E.; Lee, J.; Seong, D.; Ravichandran, N.K.; Jung, H.-Y.; Jeon, M.; Kim, J. Optical Signal 

Intensity Incorporated Rice Seed Cultivar Classification Using Optical Coherence Tomography. Comput. Electron. Agric. 2022, 

198, 107014. https://doi.org/10.1016/j.compag.2022.107014. 

12. Saleah, S.A.; Kim, S.; Luna, J.A.; Wijesinghe, R.E.; Seong, D.; Han, S.; Kim, J.; Jeon, M. Optical Coherence Tomography as a Non-

Invasive Tool for Plant Material Characterization in Agriculture: A Review. Sensors 2024, 24, 219. 

https://doi.org/10.3390/s24010219. 

13. Kim, H.; Du, X.; Kim, S.; Kim, P.; Wijesinghe, R.E.; Yun, B.-J.; Kim, K.-M.; Jeon, M.; Kim, J. Non-Invasive Morphological Char-

acterization of Rice Leaf Bulliform and Aerenchyma Cellular Regions Using Low Coherence Interferometry. Appl. Sci. 2019, 9, 

2104. https://doi.org/10.3390/app9102104. 

14. Ravichandran, N.K.; Wijesinghe, R.E.; Shirazi, M.F.; Kim, J.; Jung, H.-Y.; Jeon, M.; Lee, S.-Y. In Vivo Non-Destructive Monitoring 

of Capsicum Annuum Seed Growth with Diverse NaCl Concentrations Using Optical Detection Technique. Sensors 2017, 17, 

2887. https://doi.org/10.3390/s17122887. 

15. Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Shirazi, M.F.; Moon, B.; Jung, H.-Y.; Jeon, M.; Kim, J. Bio-Photonic Detection 

Method for Morphological Analysis of Anthracnose Disease and Physiological Disorders of Diospyros Kaki. Opt. Rev. 2017, 24, 

199–205. https://doi.org/10.1007/s10043-016-0276-9. 

16. Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Shirazi, M.F.; Moon, B.; Jung, H.-Y.; Jeon, M.; Kim, J. Bio-Photonic Detection 

Method for Morphological Analysis of Anthracnose Disease and Physiological Disorders of Diospyros Kaki. Opt. Rev. 2017, 24, 

199–205. https://doi.org/10.1007/s10043-016-0276-9. 

17. Wijesinghe, R.E.; Lee, S.-Y.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Optical Inspection and Morphological Analysis of Diospyros 

Kaki Plant Leaves for the Detection of Circular Leaf Spot Disease. Sensors 2016, 16, 1282. https://doi.org/10.3390/s16081282. 

18. Wijesinghe, R.; Lee, S.-Y.; Ravichandran, N.K.; Han, S.; Jeong, H.; Han, Y.; Jung, H.-Y.; Kim, P.; Jeon, M. Optical Coherence 

Tomography-Integrated, Wearable (Backpack-Type), Compact Diagnostic Imaging Modality for in Situ Leaf Quality Assess-

ment. Appl. Opt. 2017, 56, D108. https://doi.org/10.1364/AO.56.00D108. 

19. Kalupahana, D.; Kahatapitiya, N.S.; Silva, B.N.; Kim, J.; Jeon, M.; Wijenayake, U.; Wijesinghe, R.E. Dense Convolutional Neural 

Network-Based Deep Learning Pipeline for Pre-Identification of Circular Leaf Spot Disease of Diospyros Kaki Leaves Using 

Optical Coherence Tomography. Sensors 2024, 24, 5398. https://doi.org/10.3390/s24165398. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


