

# **IECAG** Conference

# **Two-Dimensional Electrophoresis Highlights** Proteomic Shifts in Grapevines (Vitis vinifera L.) **Exposed to Drought Under Field Conditions**

<u>Catarina Estêvão<sup>1</sup></u>, Ana Margarida Sequeira<sup>2</sup>, Lénia Rodrigues<sup>1\*</sup>, Catarina Campos<sup>1</sup>, Mónica Margues<sup>1</sup>, Lourenço Charters<sup>3</sup>, Amândio Rodrigues<sup>3</sup>, Ana Carina Neto<sup>3</sup>, Rui Flores<sup>3</sup>, Augusto Peixe<sup>4</sup>, Maria João Cabrita<sup>4</sup>, Hélia Cardoso<sup>5</sup>

<sup>1</sup>MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; <sup>2</sup>Escola de Ciências e Tecnologia, Universidade de Évora, Colégio Luis António Verney, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; <sup>3</sup>Esporão S.A., Herdade do Esporão, Apartado 31, 7200-999 Reguengos de Monsaraz, Portugal; <sup>4</sup>MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE – Global Change and Sustainability Institute, Escola de Ciências e Tecnologia, Departamento de Fitotecnia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; <sup>5</sup>MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE — Global Change and Sustainability Institute, Escola de Ciências e Tecnologia, Departamento de Biologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal

\*Corresponding author: liar@uevora.pt

Grapevine (Vitis vinifera L.) is one of the oldest and most economically significant fruit crops in the world.

It **adapts to stress** by altering gene expression, leading to **proteome changes** that drive metabolic and physiological adjustments.

**Proteomic studies** reveal key stress-response proteins and their roles in metabolic pathways, helping to understand plant resilience.

This study applied two-dimensional electrophoresis (2-DE) to evaluate the protein profile of leaves of Vitis vinifera cv. 'Touriga Nacional', from irrigated (I) and non-irrigated (NI) vines, and identify differentially expressed proteins.

# **Methodology**



## 2-DE analysis of protein extracts

First dimension: Isoelectric focusing (IEF)



Representative 2-DE proteomic profile: sample NI, biological replicate 3, technical replicate 3 47 protein spots were considered for analysis

- 10 spots were identified as differentially expressed (marked in blue)
- 5 spots showed a trend toward differential expression (marked in green)



The comparison of the proteomic profiles of I and NI samples

**Results and Conclusions** 

uncovered differences in protein expression

Separates the proteins according to their isoelectric point

Immobilized pH gradients (IPG) strips (7 cm, 3-11 pH gradient) were rehydrated for 16h with 80µg of protein



Second Dimension: Sodium Dodecyl Sulphate 2 Polyacrylamide Gel Electrophoresis (SDS-PAGE)

> Separates the proteins according to their molecular weight

The SDS-PAGE was carried out in 14% acrylamide gels, at 130V, at room temperature



### **Detection and Visualization of Proteins** 3



Proteins were stained with Coomassie **Brilliant blue G-250** 

The gels were scanned with ImageScanner III (GE Healthcare)

The 2-DE images were analyzed using SameSpots, TotalLab programme





9 spots showed significantly higher expression in non-irrigated vines

1 spot showed a significantly higher expression in vines under irrigation

UNIVERSIDADE

DE ÉVOBA

Proteins were not identified by mass spectrometry; however, potential matches were inferred by comparing apparent molecular weights with published data on proteomic responses to drought-stress

| Spots                                   | Spot apparent<br>molecular weight | Behaviour                                                                                     | Possible proteins<br>according to literature                                                                                                                                                                            |
|-----------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73, 82,<br>99, 107,<br>110, 112,<br>122 | ~ 60 kDa                          | Higher expression<br>under drought stress                                                     | HSP70 (65-75 kDa) <sup>1</sup> ; ATP synthase<br>CF1 beta subunit (61 kDa) <sup>1, 2</sup> ;<br>Glyceraldehyde-3-phosphate<br>dehydrogenase (59 kDa) <sup>1, 2</sup> ;<br>Catalase subunits (55-60 kDa) <sup>3, 4</sup> |
| 205                                     | ~ 40 kDa                          | Lower expression<br>under drought stress                                                      | LHC chlorophyll binding proteins (30-40 kDa) $^5$                                                                                                                                                                       |
| 295, 307                                | ~ 30 kDa                          | Higher expression<br>under drought stress                                                     | HSP26 (26 kDa) <sup>6,7</sup> ;<br>Glutathione S-transferase (30 kDa) <sup>6,7</sup> ;<br>Ascorbate peroxidase (27-29 kDa) <sup>1</sup> ;<br>Superoxide dismutase (20-30 kDa) <sup>7</sup>                              |
| <sup>1</sup> https://doi.or             | rg/10.1007/s10725-020-00586-4     | https://doi.org/10.3389/fpls.2021.749184 <sup>3</sup> https://doi.org/10.1186/1471-2229-13-49 |                                                                                                                                                                                                                         |

<sup>4</sup> https://doi.org/10.1042/BCJ20240247 <sup>5</sup> https://doi.org/10.3390/agronomy10050680 <sup>6</sup> https://doi.org/10.1016/j.jplph.2016.11.016 <sup>7</sup> https://doi.org/10.1016/j.plaphy.2021.08.010

CHANGE

ESPORÃO <u>f</u><u>c</u>t rendecido para a fectorizada

nião Europeia

The work is financed by the project BioGrapeSustain. Vine&Wine - SubProject Proposal -Project 81. Agenda Mobilizadora: Driving Sustainable Growth Through Smart Innovation (Reference C644866286-00000011) and by National Funds through FCT under the VINE & WINE Project UI/BD/153509/2022 and Project UIDB/05183/2020.

