Application of biostimulants derived from agricultural byproducts for the enhancement of plant growth and tolerance to abiotic stress

MDPI fct U. PORTO CiteXVI Universidade Vigo DE GALICIA

A. Perez-Vazquez¹, P. Barciela¹, A.O.S. Jorge^{1,2}, M. Carpena¹, A.G. Pereira^{1,3} and M.A. Prieto^{1,*}

¹ Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de

Agroecoloxía e Alimentación (IAA) – CITEXVI, 36310 Vigo, Spain.

² REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

³ Investigaciones Agroalimentarias Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Spain.

IECAG

202

stimulate natural processes to improving nutrient uptake and tolerance to abiotic stress.

formulation of **biostimulants** The using **by-products** generated along the agri-food chain has been proposed, thereby contributing to the circular economy.

CONCLUSIONS

The use of biostimulants incorporating compounds extracted from food by-products has been shown to:

- growth Promote the under of crops environmental stress conditions.
- Improve the quality of the fruits produced in these crops.

Figure 1. Benefits achieved by formulating biostimulants with agri-food by-products.

importance The of the extraction technique used lies in the amount of compound of interest extracted, the cost to obtain it, and the use of environmentally friendly solvents.

Table 1. Extraction techniques applied in agri-food by-products for biostimulant production.

Extraction method	Matrix	Compound extracted	Achievements
Solvent extraction	Seeds, peels and fruits	Phenolic compounds and essential oils	Increased fruit size of the crops
Water extraction	Leaves, fruits, and	Phenolic compounds	Improved root size of tuber crops Improved nutritional

In addition, for the extraction of stimulant compounds from food by-products, the extraction techniques used influence the effectiveness of the formulations.

- Each extraction technique shows advantages for extracting certain compounds, depending on their chemical nature.
 - The extraction techniques applied influence the cost-effectiveness of biostimulant production costs.

ACKNOWLEDGEMENTS

The research leading to these results was supported by Xunta de Galicia for supporting the post-doctoral grants of A.G. Pereira (IN606B-2024/011), and the pre-doctoral grant of P. Barciela (ED481A-2024-230). The authors are grateful to the National funding by FCT, Foundation for Science and Technology, through the individual research grants A.O.S. Jorge (2023.00981.BD).

Abbreviations. UAE: ultrasound assisted extraction; MAE: microwave assisted extraction, SFE: supercritical fluid extraction; EAE: enzyme assisted extraction.