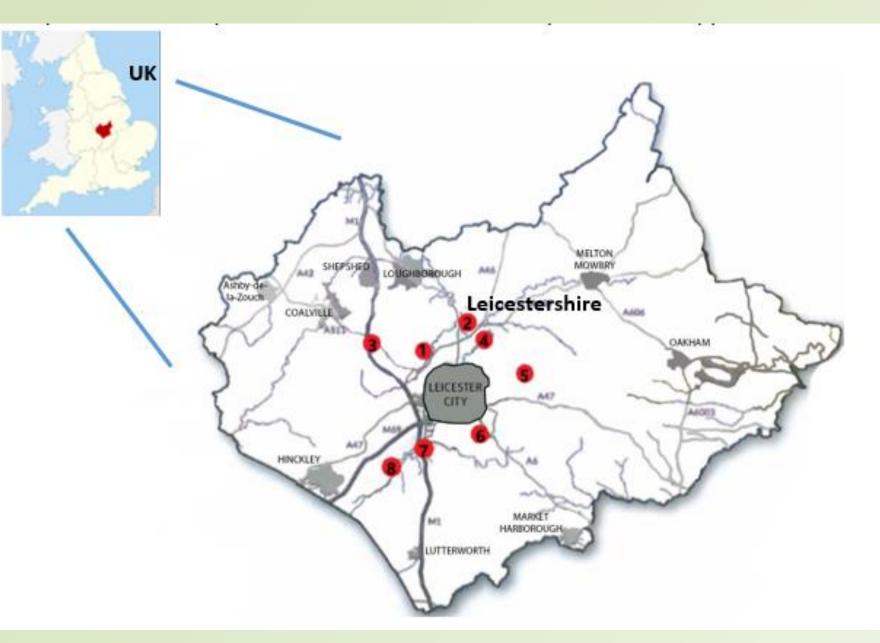


The 4th International Electronic Conference on Agronomy

02-05 December 2024 | Online

Tree bark as a bioindicator of yttrium in urban and suburban areas from Leicestershire, England.

Peña-Fernández A. *^{1,2}, Lobo-Bedmar MC.³, Evans MD^{.2,} Jagdev GS^{.2}, Peña MA.⁴


¹ Faculty of Medicine and Health Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
² Leicester School of Allied Health Sciences, De Montfort University. The Gateway, Leicester LE19BH, UK.
³ IMIDRA. Departamento de Investigación Agroambiental. "Finca el Encín" Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid, Spain.
⁴ Facultad de Farmacia, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid, Spain.

INTRODUCTION

Email: antonio.penafer@uah.es

Picking-up wild edible mushrooms from Leicestershire (England) is not recommended owing to their content of yttrium (Y) (Peña-Fernández et al., 2023).

Aim: To monitor air quality for this element, samples from tree bark were assessed, as they have been described as suitable bioindicators.

MATERIAL AND METHODS

Initial 2-6 millimetres of bark were collected from 55 different trees across Leicester city and 41 from surrounding rural/suburban areas (Fig 1); samples were taken at 1.50–1.80 metres from the ground to limit contamination from topsoil/dust (Guéguen et al., 2011) from September to November 2018.

- □ Y was monitored by ICP-MS in cleaned/ground/homogenised samples (Minganti & Drava, 2018) mineralised with HNO₃/H₂O₂ [LoD=0.00073 ng/g dry weight (dw)].
- Data was processed using statistical methods applied to censored data available in the 'NADA' statistical package.

Fig 1. Study area. The city of Leicester is indicated in grey (Leicestershire, UK).

RESULTS AND DISCUSSION

- ✓ Slightly higher levels were found in bark samples collected from trees across the suburban and rural areas (median and range, in ng/g dw): 6.339 (1.514-48.705) vs. 6.118 (1.832-126.027), suggesting similar airborne contamination by Y in both areas.
- ✓ The presence of Y was slightly higher in wild mushrooms collected from urban parks and green spaces across
- ✓ Thus, although the content of Y also varied between tree barks collected across the four cardinal subareas in which Leicester city was divided [NW (4.967) < NE (5.946) < SW (11.677) < SE (32.974)], the distribution found matched the same pattern described in the wild mushrooms collected within the city.
- ✓ Levels of Y in the tree bark were lower than the range

Leicester city (Peña-Fernández et al., 2023), although mushrooms were only collected from a nature park situated NW of Leicester city, which might explain the differences.

Guéguen, F., Stille, P., & Millet, M. (2011). Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence. Chemosphere, 85(2), 195-202.

Minganti, V., & Drava, G. (2018). Tree bark as a bioindicator of the presence of scandium, yttrium and lanthanum in urban environments. Chemosphere, 193, 847-851.

Peña-Fernández, A., Sgamma, T., Lobo-Bedmar, M. C., Evans, M. D., Segura, E., & Higueras, M. (2023, September). Biomonitoring yttrium using wild mushrooms from urban and suburban areas from Leicestershire (UK). In ISEE Conference Abstracts (Vol. 2023, No. 1).

reported in bark samples collected from Genoa (Italy; 60-1290 ng/g) (Minganti & Drava, 2018), which could indicate a lower airborne contamination by Y in Leicester city.

Although our results should be considered as preliminary, in general, lower atmospheric contamination by Y was determined across Leicestershire. However, the high presence of Y detected in edible mushrooms recommends a continuous monitoring of this metal in Leicestershire; this could be easily done using tree bark as a bioindicator instead of operating automated monitoring stations, which are more expensive.