

# **The 5th International Electronic Conference on Applied Sciences**

04-06 December 2024 | Online



Universitat d'Alacant Universidad de Alicante

# Improvement of tomato aromatic compounds through novel organic substrates from Posidonia oceanica residues

Borja Ferrández-Gómez<sup>1</sup>, Antonio Sánchez-Sánchez<sup>1</sup>, Juana D. Jordá<sup>1</sup>, Mar Cerdán<sup>1</sup>

<sup>1</sup>Department of Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry, University of Alicante, Alicante, Spain.

# borja.ferrandez@ua.es

| INTRODUCTION                                                                                                                                                                                                                |                                                                                                                                                                                    |                                                                   |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Tomato (Solanum Lycopersicum L.) is the most popular fruit crop<br>worldwide                                                                                                                                                | <b>Posidonia oceanica L. Delile (PO)</b> is a marine seagrass endemic to the Mediterranean, forming underwater meadows protected under the European Habitats Directive (92/43/EEC) |                                                                   |  |  |  |
| The <b>deterioration of the flavor quality</b> of commercial tomatoes is one of the main causes of consumer complaints                                                                                                      | These meadows are essential for water oxygenation, sediment stabilization, coastal erosion prevention as habitats for various marine species                                       |                                                                   |  |  |  |
|                                                                                                                                                                                                                             | PO contains high l                                                                                                                                                                 | evels of nutrients and secondary metabolites that play a key role |  |  |  |
| One of the most important factors influencing the synthesis of aromatic compounds in tomato is the <b>growing medium</b> , though studies on the effect of the growing substrate on its volatile profile <b>are limited</b> | When its leaves die, they accumulate on beaches, creating environmental and economic issues in touris<br>areas as they must be <b>removed</b>                                      |                                                                   |  |  |  |
|                                                                                                                                                                                                                             | These residues, classified as urban waste, are taken to landfills, where their slow decomposition leads to                                                                         |                                                                   |  |  |  |
| Valorization of marine waste for the development of new products with                                                                                                                                                       | long-term accumulation                                                                                                                                                             |                                                                   |  |  |  |

# **OBJECTIVES**

To evaluate the influence of the cultivation substrate on the physicochemical properties of tomatoes obtained in the first fruiting.

To improve the aromatic and flavor properties of tomato through the use of novel growing media obtained from the remains of PO, favoring the revalorization of residues.







- Tomato seedling cv. sweet Cherry
- Treatments:
- 1. Control: 50% peat-50% perlite.
- 2. PO: 50% PO washed/sieved-50% perlite.
- 3. IP: 50% PO unaltered 50% perlite.



%Acidity

#### **Volatile compounds by SPME-GC/MS**

9 weeks under controlled temperature conditions (18°C/27°C (night/day)), 60% RH, and two daily irrigations of 100 mL with tap water.

**EXPERIMENTAL SECTION** 

# **RESULTS & DISCUSSION**

Table 1. Quality parameters on tomato fruits for the different soilless substrates proposed.

| Treatment | FW (g) | Size (mm) | TSS (°Bx) | Acidity (%) | Ripening index |
|-----------|--------|-----------|-----------|-------------|----------------|
| Control   | 4.97   | 19.8      | 8.7       | 0.25        | 34.4           |
| <b>PO</b> | 5.77   | 22.1      | 7.4       | 0.23        | 45.7           |
| IP        | 4.65   | 18.0      | 10.0      | 0.39        | 22.1           |

Table 2. Mineral analysis on tomato fruits for the different soilless substrates.

| Treatment  | Control | PO    | IP    |  |  |  |  |
|------------|---------|-------|-------|--|--|--|--|
| P (mg/kg)  | 6436    | 5463  | 5898  |  |  |  |  |
| Na (mg/kg) | 513     | 849   | 1594  |  |  |  |  |
| K (mg/kg)  | 25814   | 25689 | 20073 |  |  |  |  |
| Mg (mg/kg) | 1153    | 1390  | 1099  |  |  |  |  |
| Ca (mg/kg) | 291     | 562   | 430   |  |  |  |  |
| Mn (mg/kg) | 18      | 6     | 5     |  |  |  |  |
| Fe (mg/kg) | 49      | 47    | 30    |  |  |  |  |
| Zn (mg/kg) | 31      | 22    | 17    |  |  |  |  |
| Cu (mg/kg) | 3.5     | 1.8   | 1.7   |  |  |  |  |
| Si (mg/kg) | 18      | 23    | 9     |  |  |  |  |
|            |         |       |       |  |  |  |  |
|            |         |       |       |  |  |  |  |

This variation was due to the high salinity of the IP sample, which resulted from not washing away the salts from the Posidonia oceanica debris, favoring the production of sweeter, although smaller, tomatoes

#### Volatile compounds analysis by SPME-GC/MS







0.1

0.2

Hexyl acetate Octanal CH3 Nonana

a-terpineol

**Tomatoes from PO treatments also** had a notable concentration of these compounds that, contributing to their herbal and fresh notes

sweet aromas

This variation was due to the high salinity of the IP sample, which resulted from not washing away the salts from the Posidonia oceanica debris

### CONCLUSION

- The composition of secondary metabolites, macro and micronutrients, as well as the high silicon concentration of Posidonia oceanica produced a slight stress in the tomato plants that allowed the activation of the intrinsic response mechanisms of tomato plants.
- The substrate from PO favored an enrichment in Na, conferring a salty point to the tomato in a natural form.
- It is important to note that the composition of the growing substrate had a direct effect on the organoleptic, ripening and quality properties of the tomatoes.

# ACKNOLEDGEMENTS

Project supported by the **UA DENIA** Mediterranean Program Gastronomy for the promotion of R+D+i in the field of gastronomy, GASTERRA2024.

https://sciforum.net/event/ASEC2024