





# **Optimizing Ensemble Performance with Condorcet Voting: A Study on**

"JÚLIO DE MESQUITA FILHO"

Weak Learners for Image Classification

Pedro Cesar Camargo, Leopoldo Lusquino Filho

ICTS - Instituto de Ciência e Tecnologia de Sorocaba

#### Introduction

This study presents an innovative approach to improve ensemble learning, introducing a modification to the voting rule for aggregating individual classifier results.



| Metric   | Hard-V | Soft-V | Condorcet-V | Model Average |
|----------|--------|--------|-------------|---------------|
| Accuracy | 0.4015 | 0.4055 | 0.4310      | 0.2752        |

While simple majority and weighted majority rules are common, recent research suggests that alternatives, such as the Condorcet voting rule, may offer greater efficiency in complex multi-class image classification tasks

#### Objectives

To demonstrate the robustness of the Condorcet voting rule in multi-classification tasks and its superior energy efficiency compared to traditional methods.

## Methodology

| Precision | 0.4241 | 0.4750 | 0.4481 | 0.3049 |
|-----------|--------|--------|--------|--------|
| Recall    | 0.4015 | 0.4055 | 0.4481 | 0.2756 |
| F1-Score  | 0.3898 | 0.4133 | 0.4394 | 0.2846 |
| AUC       | 0.956  | 0.956  | 0.966  | 0.852  |

 Table 1: Comparison of Voting Methods and Model Averages

## **Result Analysis**

The Condorcet rule increased accuracy by up to 14% compared to individual models and outperformed simple and weighted majority rules by 3%. In addition to improving accuracy, it provides greater stability and consistency in scenarios with high variability among classifiers, evaluated on the CIFAR-100 dataset.

We addressed the Condorcet rule to improve accuracy in multi-classification tasks, surpassing the limitations of traditional rules, especially with weak learners (accuracy < 30%).

We tested with classical neural networks (VGG, ResNet, EfficientNet) and evaluated with models limited to 35 layers and less than 4 million parameters.



Figure 1: Flowchart indicating how the result of 3 voters is aggregated with the voting

The AUC of 0.966 highlights the Condorcet rule's capability to discriminate between classes, offering an optimal balance between sensitivity and specificity in complex multi-classification environments involving 100 classes.

#### Conclusion

The Condorcet rule improves ensemble accuracy and stability in complex multi-classification environments. It represents a viable alternative for enhancing efficiency in both accuracy and energy consumption, with potential applications in low-resource settings.

#### rules standard



Figure 2: Preference graph that indicates the situation of voters described in the text on the left, showing how a winner is selected by the Condorcet method

a wins

#### References

[1] U, C.; SONG, F.; WANG, Y.; et al. Breast cancer histopathology image classification through assembling multiple compact CNNs. \*BMC Medical Informatics and Decision Making\*, v. 19, p. 198, 2019. DOI: [10.1186/s12911-019-0913- x] (https://doi.org/10.1186/s12911-019-0913-x).

[2] A Soft-Voting Ensemble Classifier for Detecting Patients Affected by COVID-19 - Scientific Figure on ResearchGate. Available: https://www.researchgate.net/figure/The-figure-shows-with-an-example-how-both-hard-and-softvoting-work-The-ensemble\_fig3\_362311832. Acessed at: 4 set. 20

[3] WERBIN-OFIR, Havi; DERY, Lihi; SHMUELI, Erez. Beyond majority: Label ranking ensembles based on voting rules. Expert Systems with Applications, v. 136, p. 50-61, 2019. DOI: https://doi.org/10.1016/j.eswa.2019.06.022

[4] ML WIKI. Condorcet's Rule. Available at: <u>http://mlwiki.org/index.php/Condorcet's Rule</u>. Acessed at: 2 dez. 2024.

[5] Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images (CIFAR-100 dataset).Retrieved from https://www.cs.toronto.edu/~kriz/cifar.html