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« The proliferation of drones (UAVS) raises significant concerns * The study introduces the LDDm-CNN model, a lightweight
regarding security and privacy. Convolutional Neural Network (CNN) designed to detect drones

efficiently on resource constrained devices.

* Deploying drone detection models on edge devices Is
challenging due to resource constraints that hinder the ¢ One of the key innovations in this research is the proposal of Bayesian

feasibility of complex deep learning models. optimization- based knowledge distillation.

 Knowledge distillation effectively compresses neural
networks for UAV detection in constrained environments, but
optimizing its hyper parameters is challenging due to the vast
and complex search space.
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3. Tram teacher model to obtan soft labels of teacher model using scaled softmax with  The proposed LDDmM-CNN Model combines the strengths of
¢_opt, @opt. from Bayesian optimization). knowledge distillation and Bayesian optimization, as illustrated in
Sﬂf””ﬂi':::ncrd'l:zz}=£:,:l—;::u: Figure above, to achieve accurate drone detection with efficient,
4. Tram student model to compute the general loss using dishlled kInowledze obtam from resource_conStrained mOdEIS'
abowe teacher model:

 Knowledge distillation compresses large, pre-trained teacher
models into smaller, faster student models while preserving their
accuracy, allowing for deployment on edge devices.

Student model phase 1 to find student loss:
Sioss = & - SoftmaxLoss(Z gy dens. Soft_labels)

Student model phase 2 to find Dastillation loss:
_ Dioss = (1 — @)~ CE(Zstudene- hard_labels) « Meanwhile, Bayesian optimization efficiently searches a vast
0 General less Function: hyper parameter space to identify the configuration that optimizes
Generaligs = @ - SoftmaxLoss(Zstudent: soft_labels) + (1 — &).CE(Zstudene. hard labels) the knowledge distillation process, ensuring the student model
6. Minimiz ral 1 the ground Truth : : ’ :

CEmmER e achieves peak performance in drone detection.
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Result
Table 1. Performance of the Proposed LDDm-CNN Model  Compared to existing drone detection models in Table 2, the proposed
Models Precision | Recall | Fl-score ) Accuracy | Modelsize | Trammg ume | Noparams | | DDm-CNN excelled in size, training time, and real-time inference,
% o | % despite being smaller and simpler.

Proposed model | 0.63 300 [0 TG TR s This demonstrgte_s the effeqtlveness of knowlgdge c_ilstlll_atlon _hyper
parameter optimization using Bayesian optimization in building

Baseline Model | 0.70 | 0.74 | 073|074  |281.35MB | 14 min 73,755,403 efficient, lightweight models.

Table 4.2: Comparison of the Proposed LDDm-CNN Model with Bigger Models

Models Accuracy (%) | Recall (°t) | Precision (%) | Size No.params | Training- .
. Conclusion

& 5 Bhavishya) 0.955 051 056 ] ‘ ] In this study, we introduces the LDDm-CNN, a lightweight drone
et.al detection model specifically designed for resource-constrained
- Madaci et ot | O - - - : - environments. This model leverages a shallow Convolutional Neural
(2020) Network (CNN) architecture, optimized for efficiency, making it suitable
> Alameral | 090 It R ' ' ' for real-time detection on edge devices with limited computational
Proposed model | 0.95 0.90 029 563 MB | 1477123 10min resources.




