

### **Enhanced Drone Detection Model for Edge Devices Using Knowledge Distillation And Bayesian Optimization**



Maryam Lawan Salisu <sup>1</sup>,\*, Farouk Lawan Gambo <sup>1</sup>, Aminu Musa<sup>1</sup> and <sup>1</sup>Aminu Aliyu Abdullahi

<sup>1</sup>Federal University Dutse, Department of computer science

\* marylsgumel@gmail.com

## Problem

- The proliferation of drones (UAVs) raises significant concerns regarding security and privacy.
- Deploying drone detection models on edge devices is challenging due to resource constraints that hinder the feasibility of complex deep learning models.
- Knowledge distillation effectively compresses neural networks for UAV detection in constrained environments, but optimizing its hyper parameters is challenging due to the vast and complex search space.

# Contribution

- The study introduces the LDDm-CNN model, a lightweight Convolutional Neural Network (CNN) designed to detect drones efficiently on resource constrained devices.
- One of the key innovations in this research is the proposal of Bayesian optimization-based knowledge distillation.

# Method



#### **Sample Images From The Dataset**

 $f(x; \alpha, T)$ =Accuracy (Student (X\_train, Y\_train,  $\alpha, T$ ) X\_val, Y\_val,)

3. Train teacher model to obtain soft labels of teacher model using scaled softmax with

(T\_opt, α\_opt, from Bayesian optimization)

$$Softmax_{scaled}(Z_i) = \frac{e^{Z_i/T_opt}}{\sum_i e^{Z_i/T_opt}}$$

4. Train student model to compute the general loss using distilled knowledge obtain from above teacher model:

Student model phase 1 to find student loss:

 $S_{loss} = \alpha \cdot SoftmaxLoss(Z_{student}, soft_labels)$ 

Student model phase 2 to find Distillation loss:

 $D_{loss} = (1 - \alpha)$ .  $CE(Z_{student}, hard_labels)$ 

5. General loss Function:

 $General_{Loss} = \alpha \cdot SoftmaxLoss(Z_{student}, soft_labels) + (1 - \alpha).CE(Z_{student}, hard_labels)$ 

6. Minimize general loss on the ground Truth

7. Stop

- The proposed LDDm-CNN Model combines the strengths of knowledge distillation and Bayesian optimization, as illustrated in Figure above, to achieve accurate drone detection with efficient, resource-constrained models.
- Knowledge distillation compresses large, pre-trained teacher models into smaller, faster student models while preserving their accuracy, allowing for deployment on edge devices.
- Meanwhile, Bayesian optimization efficiently searches a vast hyper parameter space to identify the configuration that optimizes the knowledge distillation process, ensuring the student model achieves peak performance in drone detection.

## Result

| Table 1: Performance of the Proposed LDDm-CNN Model |           |        |          |          |            |               |            |  |  |
|-----------------------------------------------------|-----------|--------|----------|----------|------------|---------------|------------|--|--|
| Models                                              | Precision | Recall | F1-score | Accuracy | Model size | Training time | No.params  |  |  |
|                                                     | (%)       | (%)    | (%)      | (%)      |            |               |            |  |  |
| Proposed model                                      | 0.89      | 0.90   | 0.89     | 0.95     | 5.63 MB    | 10 min        | 1,477,123  |  |  |
| Baseline Model                                      | 0.70      | 0.74   | 0.73     | 0.74     | 281.35 MB  | 14 min        | 73,755,403 |  |  |

- Compared to existing drone detection models in Table 2, the proposed LDDm-CNN excelled in size, training time, and real-time inference, despite being smaller and simpler.
- This demonstrates the effectiveness of knowledge distillation hyper

Table 4.2: Comparison of the Proposed LDDm-CNN Model with Bigger Models

| Models                     | Accuracy (%) | Recall (%) | Precision (%) | Size    | No.params | Training- |
|----------------------------|--------------|------------|---------------|---------|-----------|-----------|
|                            |              |            |               |         |           | time      |
| K S Bhavishya              | 0.955        | 0.91       | 0.96          | -       | -         | -         |
| et. a1.                    |              |            |               |         |           |           |
| F Mahdavi et al.<br>(2020) | 0.95         | -          | -             | -       | -         | -         |
| S. S. Alam et al.          | 0.975        | 0.980      | 0.980         | -       | -         | -         |
| Proposed model             | 0.95         | 0.90       | 0.89          | 5.63 MB | 1,477,123 | 10min     |

parameter optimization using Bayesian optimization in building efficient, lightweight models.

Conclusion

In this study, we introduces the LDDm-CNN, a lightweight drone detection model specifically designed for resource-constrained environments. This model leverages a shallow Convolutional Neural Network (CNN) architecture, optimized for efficiency, making it suitable for real-time detection on edge devices with limited computational resources.