

The 5th International Electronic Conference on Applied Sciences

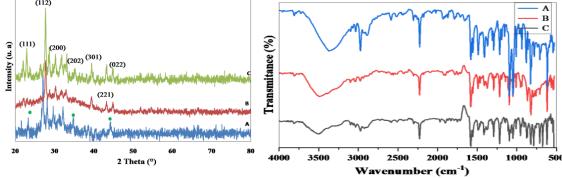
Synthesis, characterization, and application of Iron copper

phosphate nanoparticles Berrichi Amina 1,2, Bachir Redouane¹

¹Laboratory of Catalysis and Synthesis in Organic Chemistry, Faculty of Science and technology, University of Tlemcen BP 119, 13000, Algeria ² University of Ain Temouchent, BP 284, 46000, Ain Temouchent, Algeria

Introduction

Corresponding author: berrichi.amina@yahoo.fr


Since the calcium phosphate nanoparticles utilization in biological, therapeutic and bio-medicinal fields such as treatment of cancers, caries inhibition, researchers decrease their researches by using other metals for the modification of phosphate materials. In this study, we prepared copper iron phosphate material using hydrothermal rout, during preparation several conditions were used modifying the urea amount. So, different structures were achieved. The material was characterized by

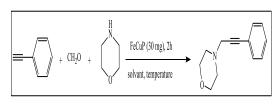
SEM, and IR analysis. The catalyst was used in the synthesis of pyrroles

washing by irradiation ultrasons

Drying

Characterization

Fig.2. XRD analysis


Fig.3. FTIR analysis

V: 14 0/

Pyrrol synthesis

benzylamine (1.5 mmol), nitroéthane (1 ml), 4-chlorobenzaldèhyde (1mmol); acetyleacetone (1 mmol), catalyst (50 mg), 5h

propargylamine synthesis

Reaction condition: phenylacetylene

Cataryst	rieid %
FeCuP1	48
FeCuP2	98
FeCuP3	36

Catalyat

(2.2 mmol), aldehyde (2mmol), amine (2.2 mmol), CH₃CN (3 mL), FeCuP (30 mg), 80 °C, 2 h