

The 5th International Electronic **Conference on Applied Sciences**

Examination of new FDM filaments for

04-06 December 2024 | Online

applications with large temperature variations

Ömer Balandi¹, Uwe Güth², Leon Diel¹, Sinan Kiremit¹ and Andrea Ehrmann¹ 1 Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany ² Department of Physical and Biophysical Chemistry (PC III), Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany

Introduction & Aim

3D printing is nowadays also used for the production of customized objects, spare parts, etc. [1] Among the various 3D printing technologies, the fused deposition modeling (FDM) process is the most widely used due to its simplicity, the mostly nontoxic polymers, and the availability of inexpensive printers and materials [1]

As-prepared

Thermal treatment

- Printed parts often exhibit mechanical and thermal inadequacies
- Space applications such as microsatellites require stable mechanical properties under periodically strongly changing temperatures
- Microsatellites and similar space applications mostly need customized parts, making 3D printing suitable for such parts [2]
- \rightarrow New FDM-printable polymers can help to make this technology usable for space applications

Materials and Methods

Here we investigate novel FDM filaments (GRAUTS GmbH) with and without fibrous fillers before and after cyclic temperature variations between – 40 °C and + 80 °C [3,4], similar to the situation of a microsatellite in the low Earth orbit (LEO):

Name	Material	Shore D	T_{glass}
HPP 52ShD	HPP	52	~ 50 °C
HPP 57 ShD	HPP	57	~ 50 °C
HPP + GF 1443	HPP with 15% glass fiber	84*	~ 55 °C
Mid GF 1470	PA with 15% glass fiber	78	~ 60 °C
Mid GF 1461	PA with 15% glass fiber	80*	~ 55 °C
PA + 15% CF	PA with 15% carbon fiber	75*	~ 60 °C
Flex S42	HPP	42	< -40 °C

Results

Dimensions:

- Heights generally ~ 0.4 mm too low \rightarrow missing printing accuracy
- Lengths and widths printed correctly
- No changes after thermal treatment (same finding for lengths) widths, respectively)

Tensile tests:

Height (mm) Tensile Bending Impact 35

10

8

Printing parameters:

Name	Nozzle temperature/°C	Bed temperature/°C	Speed/(mm/s)
HPP 52ShD	230	60	40
HPP 57 ShD	230	60	40
HPP + GF 1443	230	60	50
Mid GF 1470	245	85	50
Mid GF 1461	245	85	50
PA + 15% CF	260	90	50
Flex S42	230	60	35

Sample dimensions:

- 3 mm x 10 mm x 75 mm (tensile tests, DIN EN ISO 6892-1) lacksquare
- 10 mm x 10 mm x 55 mm (notch impact test) ullet
- 4 mm x 10 mm x 100 mm (3-point bending, DIN EN ISO 178) lacksquare

Heat treatment:

climate chamber CTC256, 64 cycles between 80 °C and -40 °C

Characterization:

- Differential scanning calorimetry (DSC 3, Metler-Toledo)
- Digital microscope Camcolms 2 (Vellemann)
- Scanning electron microscope (SEM) Phenom ProX G3 3-point bending tests (Kern & Sohn GmbH) at 10 mm/(min Notched bar impact tests (pendulum tester, ZwickRoell)

- Harder and more brittle samples (PA, Mid GF, HPP + GF) vs. elastic and more ductile ones
- Tensile strength after thermal treatment increased for Mid GF 1461, others unaltered
- Elongation at break reduced for HPP+GF1443

Fracture cross-sections:

- No fiber fracture visible
- Holes due to pulled-out fibers
- Matrix shows partial ductile failure + localized viscous stretching of the matrix between the fibers

Bending / impact tests:

Literature

- [1] Noorani, R. Rapid prototyping: principles and applications. New Jersey: John Wiley & Sons, 2005
- [2] Blachowicz, T.; Pajak, K.; Recha, P.; Ehrmann, A. 3D printing for microsatellitesmaterial requirements and recent develop-ments. AIMS Materials Science 2020, 7, 926-938
- [3] Storck, J. L.; Ehrmann, G.; Uthoff, J.; Diestelhorst, E.; Blachowicz, T.; Ehrmann, A. Investigating inexpensive polymeric 3D printed materials under extreme thermal conditions. Materials Futures 2022, 1, 015001.
- [4] Storck, J. L.; Ehrmann, G.; Güth, U.; Uthoff, J.; Homburg, S. V.; Blachowicz, T.; Ehrmann, A. Investigation of Low-Cost FDM-Printed Polymers for Elevated-Temperature Applications. Polymers 2022, 14, 2826

- Maximum force increased
- Impact energy often reduced

Conclusion

- Thermal treatment did not change the sample dimensions.
- Tensile strength remained nearly unaltered.
- Maximum force in bending tests was increased.
- Notched bar tests showed a reduction of the higher impact energies, while lower values remained virtually unaltered.
- \rightarrow Especially brittle and Flex42 filaments suitable for applications with strongly varying temperatures \rightarrow More research needed to improve printing quality