UNMANNED AMPHIBIOUS ROBOT IN AIDING POST-TYPHOON HEAVY FLOODING REPONSE USING LORA-BASED COMMUNICATION AND YOLOV5

Gabriel Lyane P. Arevalo¹, Aviegail B. Bobadilla², Rajan Mole D. Macaraig³, Felix Christofer G. Valdez⁴,

Eufemia A. Garcia⁵, Charles G. Juarizo⁶

1, 2, 3, 4 Project Students, Department of Electronics Engineering, Pamantasan ng Lungsod ng Maynila

^{5,6} Faculty Members, Department of Electronics Engineering, Pamantasan ng Lungsod ng Maynila

glparevalo2020@plm.edu.ph¹, aviegailbobadilla0711@gmail.com², rmdmacaraig2020@plm.edu.ph³, fcg.valdez07@gmail.com⁴, eagarcia@plm.edu.ph⁵, cgjuarizo@plm.edu.ph⁶

ABSTRACT

In the Philippines, about twenty (20) typhoons occur annually, causing heavy flooding which poses risks that lead to injuries and casualties despite preparedness measures. This study addresses the problem of hindered rescue efforts due to limited resources, dangerous access to flooded areas, and damaged communication infrastructures by introducing an innovative solution: an unmanned amphibious robot for search and monitoring tasks. The developed robot is capable of locating human presence and help needed while providing a live video feed. Evaluations demonstrated the capabilities of the robot to navigate both on land and water with respective speeds of 1.2 m/s and 0.205 m/s over a 120-m LoRa communication. The live video feed quality highlights the feasibility of a 4G LTE network for real-time display. The trained YOLOv5 model had high accuracy in detecting human presence and help needed over 3.5m and 7m distances with 90% and 93.33%, respectively. GPS coordinates reception yields good results in open areas only. Seamless integration of data from the robot to the local website, offering accessible data. Limitations arose when live video feed streaming and YOLOv5 processing were done simultaneously. This research contributes to aiding post-typhoon heavy flooding response by developing an unmanned amphibious robot, offering insights into its performance and potential for real-world applications in disaster response scenarios.

Keywords: Heavy flooding, LoRa, Machine Learning, Unmanned Amphibious Robot

INTRODUCTION

Background of the Study

Limited rescue equipment

Inspection relies Delayed search on communication and rescue

Objectives

- 💋 To construct an unmanned amphibious robot capable of traveling on both land and water
- S To configure a robot capable of providing a live video feed
- To develop a robot capable of locating human presence and help

Significance

Aiding search and monitoring

Ensuring rescuer safety

Contributing to innovation

needed using Global Positioning System (GPS) and YOLOv5

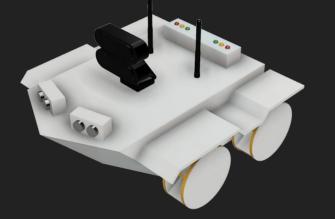
METHODOLOGY

System Architecture

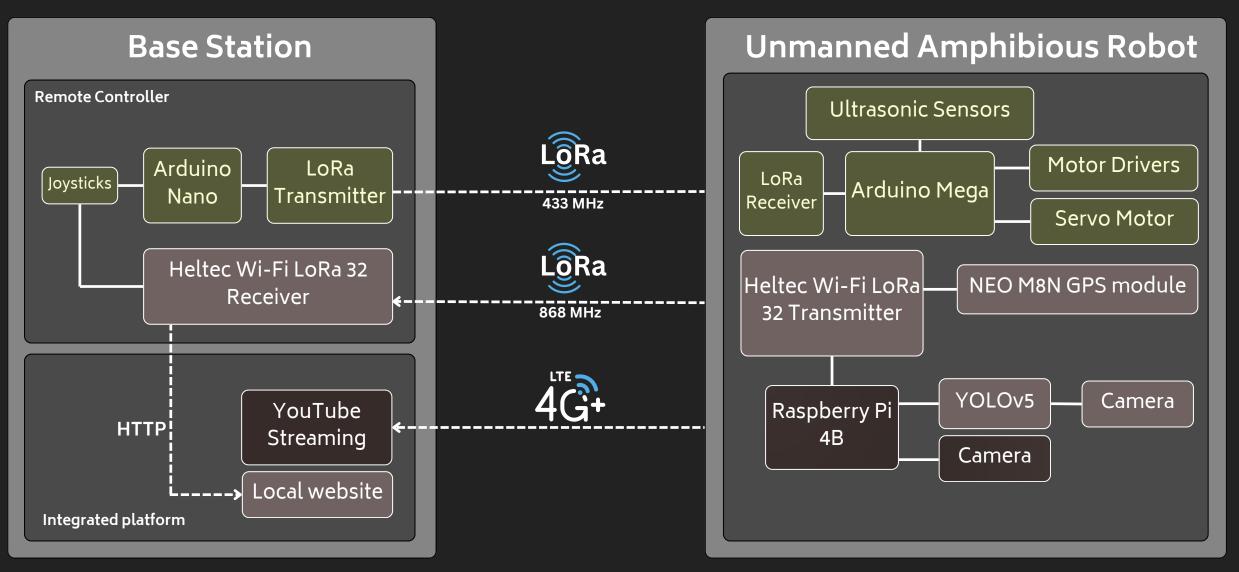
Research Design Developmental design Experimental design

Research Development

Hardware structure construction Electronics and firmware integration


Data Collection

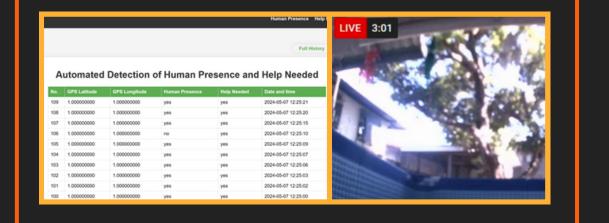
Residential area in Biwas, Tanza Cavite, involving 10 participants


Analysis and Interpretation

Hypothesis testing, correlation, descriptive statistics

Research Development Unmanned Amphibious Robot

Integrated Platform


RESULTS AND DISCUSSION

Land and Water Navigation

	<u> </u>						
Land Navigation		Water Navigation					
Terrain Type	Speed	Dandamkı					
Smooth Terrain	1.2 m/s		0.2 m/s				
Moderate Terrain	0.6 m/s						
Rough Terrain	0.45 m/s						
	1.48%						
	100%						
	73.33%						
Maximum Effec	120m						
	56 minutes						
Live Video Feed Quality							

CONCLUSION

- Develop an unmanned amphibious robot (UAR) for post-typhoon heavy flooding response.
- Successfully navigates on land (smooth, moderate, rough terrains) and water.
- LoRa-based system with a maximum effective range of 120 meters.

Network Connectio	Rate	e Mean	Q- eter Bit	trate En	Mean coding Speed	Me: Frame second	es per	Speed (Mbps)			
4G LTE Network	23.2	8 17.4	7 151	9.`04	1.01	30.0	01	15.1			
Human Presence and Help Gesture Recognition											
Difference with Google Maps				0.07 %							
Overall Machine Learning Accuracy				91.67 %							
Recognition Time			3.43 seconds								
Local Website Display Capabilities				100 %							
Locating Human Presence and Help Needed											
Setting T	Trials _	Live Vid	Live Video Feed		Lea	chine rning	Local W Disp				
		Quality	Delay	- Navigati	on	ection	Capal	•			
Land	10	60%	11.66s	100%	6	0%	100	%			
Water	20	40%	13.81s	100%	6	0%	100	%			

The results indicate that the robot had a successful amphibious navigation, live feed provision, and automated detection. The individual processes show noteworthy performance. However, the system performance results show degradations in the live video feed and automated detection when simultaneous processes were done.

Effective obstacle detection and avoidance.

Streams successfully using 4G LTE with positive video quality.

Accurately detects human presence and help needs across varying distances.

Processing machine learning and live video on Raspberry Pi 4B caused performance delay.

UAR shows strong potential for use in post-typhoon heavy flooding response.