IECGE 2024 Conference

The 2nd International Electronic Conference on Genes

11-13 December 2024 | Online

Machine Learning-Driven Omics Approaches for Diagnostic Biomarker in Tuberculosis based on Differential Gene Expression data

<u>Javed Aalam</u> (javedalambioinformatics@gmail.com) 1*, Rafat Parveen (rparveen@jmi.ac.in)1 1Department of Computer Science, Jamia Millia Islamia, New Delhi, India – 110025

INTRODUCTION & AIM

Introduction: Tuberculosis (TB) remains a major global health threat with rising cases. The World Health Organization's 2023 Global Tuberculosis Report reveals a substantial increase in TB cases, with 8.2 million new diagnoses, up from 7.5 million in 2022 [1]. Traditional diagnostic methods like the Tuberculin Skin Test and IGRA have limitations. OMICS technologies—genomics, transcriptomics, and proteomics—offer the potential for identifying specific biomarkers, and enhancing the accuracy of TB diagnostics and biomarker discovery.

Aim: This study explores how OMICS technologies (genomics, transcriptomics, proteomics) combined with machine learning algorithms can improve TB biomarker identification, focusing on promising biomarkers.

RESULTS & DISCUSSION

Authors/Ref.	Aim	Datasets	Algorithms	Findings	Future Work
[1] Juliana	Screen IncRNAs	2,759 subjects,	SVM,	Identified two	Integrate
Jc Chen et	for TB diagnosis	EHR metrics,	Logistic	lncRNAs as TB	lncRNAs and
al. (2022)		and GEO	regression,	biomarkers	EHR for early
		database	ML	(88% accuracy)	diagnosis
	Identify	GEO database (GSE37250, GSE19439)	LASSO, RF, SVM- RFE	Key	Identify
[2] Shuai Ma	inflammatory			inflammatory	therapeutic
et al. (2023)	genes for TB			genes found	targets and
	progression			(90% accuracy)	drugs
[3] A. F. Fernande et al. (2022)	Discover molecular biomarkers for TB diagnosis	SwissProt, MBP-GFP databases	Multi- omics with ML	Identified TB biomarkers (92% accuracy)	Develop point-of-care diagnostics
[4] Hooman	Predict active TB	Retrospective	MILO	23-antigen	Improve
		1	1.0		

Figure 1. Primary Modes of Tuberculosis Spread Worldwide

METHOD

Approach: A comprehensive analysis of over 100 studies from PubMed, Nature, Scopus, and IEEE Xplore was conducted, focusing on TB, ML, and OMICS technologies.

Focus: Emphasis was placed on machine learning models (KNN, SVM, deep learning) applied to OMICS data for TB biomarker discovery, prioritizing studies on genomic, transcriptomic analysis. **Data:** OMICS data, including gene expression profiles, protein biomarkers, and metabolomic data, were integrated for analysis. ML techniques were then used to identify potential TB biomarkers, with a primary focus on optimizing the accuracy, sensitivity, and specificity of the results **[2]**.

Figure 2. Flowchart detailing the search criteria for including and excluding research publications

]	H. Rashidi	from serological	dataset (199 TB	platform	model with	clinical
	et al. (2021)	data	cases, 333	with ML	93% accuracy	interpretation
			plasma samples)			for TB
						diagnosis
г 5	5] Sang-	Identify signature	16S rRNA	16S rRNA sequencing	Achieved 96%	Apply ML for
	Mok Lee et	genes for	sequencing of		accuracy in	microbiota-
	al. (2023)	Mycobacterium	cattle gut	with ML	disease	based
ai. (2023	al. (2023)	infection	microbiota		identification	diagnostics

Machine learning-driven OMICS approaches have identified TB biomarkers using algorithms like SVM, LASSO, and MILO, achieving 88% to 96% accuracy. These studies focused on lncRNAs, inflammatory genes, and microbiota signatures for diagnosis and progression. Future efforts aim to integrate omics data, improve clinical tools, and develop point-of-care diagnostics **[3]**.

CONCLUSION AND FUTURE WORK

Conclusion: In conclusion, recent advancements in machine learning-driven OMICS approaches have significantly enhanced our ability to discover and identify biomarkers for TB. By leveraging algorithms like LASSO, RF, and SVM across various data types, including metabolomics, proteomics, transcriptomics, and microbiota profiles, researchers have achieved 96% high accuracy in TB diagnosis, progression monitoring, and drug resistance identification. Notably, studies have demonstrated the potential for early diagnosis, non-sputum-based diagnostic approaches, and point-of-care tools. These findings underscore the promising role of ML in advancing TB diagnostics and therapy, paving the way for more efficient, personalized healthcare solutions.

Future Work : Future research should focus on integrating multi-omics data with advanced machine learning to improve TB biomarker identification. Key areas include enhancing non-sputum-based diagnostics, developing point-of-care tools, and utilizing real-time electronic health record data and deep learning to boost diagnostic accuracy. These innovations will be vital for translating ML approaches into personalized, effective TB management.

REFERENCES

- World Health Organization, "Global Tuberculosis Report 2023," WHO, Geneva, 2023. Available: <u>https://www.who.int/teams/global-tuberculosis-programme/tb-reports</u>.
 Ma, S., Peng, P., Duan, Z., Fan, Y., & Li, X. (2023). Predicting the Progress of Tuberculosis by Inflammatory Response-Related Genes Based on Multiple Machine Learning Comprehensive Analysis. *Journal of Immunology Research*, 2023, 1–22. <u>https://doi.org/10.1155/2023/7829286</u>.
- Denkinger, C. M., Pai, M., & Menzies, D. (2014). New diagnostic tools for tuberculosis: How to improve their uptake and impact. *The Lancet Respiratory Medicine*, 2(7), 538-548. <u>https://doi.org/10.1016/S2213-2600(14)70123-1</u>.

https://sciforum.net/event/iecge2024